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Abstract. Recent works on text-based localization of moments have shown high
accuracy on several benchmark datasets. However, these approaches are trained
and evaluated relying on the assumption that the localization system, during test-
ing, will only encounter events that are available in the training set (i.e., seen
events). As a result, these models are optimized for a fixed set of seen events and
they are highly unlikely to generalize to the practical requirement of localizing a
wider range of events, some of which may be unseen. Moreover, acquiring videos
and text comprising all possible scenarios for training is not practical. In this re-
gard, this paper introduces and tackles the problem of text-based temporal local-
ization of novel/unseen events. Our goal is to temporally localize video moments
based on text queries, where both the video moments and text queries are not
observed/available during training. Towards solving this problem, we formulate
the inference task of text-based localization of moments as a relational prediction
problem, hypothesizing a conceptual relation between semantically relevant mo-
ments, e.g., a temporally relevant moment corresponding to an unseen text query
and a moment corresponding to a seen text query may contain shared concepts.
The likelihood of a candidate moment to be the correct one based on an unseen
text query will depend on its relevance to the moment corresponding to the se-
mantically most relevant seen query. Empirical results on two text-based moment
localization datasets show that our proposed approach can reach up to 15% abso-
lute improvement in performance compared to existing localization approaches.

Keywords: Text-based Temporal Localization, Moment Retrieval, Novel/Unseen
Event Localization.

1 Introduction

Event localization in a long and untrimmed video is an important video analysis prob-
lem. Recently, there has been a surge of works that address the task of temporal ground-
ing of text/sentence in untrimmed videos [11, 3, 68, 28, 71, 35]. Most of these works
utilize a set of fully supervised training data containing videos, text descriptions, and
temporal boundary annotations. These works try to optimize over a fixed set of events
and queries (which we call seen events and seen queries) that are available during train-
ing. However, in a real-world dynamic environment, a system is expected to encounter
previously unseen events and queries, as shown in Figure 1, and is required to local-
ize corresponding moments based on unseen text queries in the videos. As a result, a
system optimized over a fixed set of events is unlikely to generalize and perform well
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Fig. 1. Example illustration of our proposed task. We consider the task of localizing novel mo-
ments for unseen queries. The set of verbs and nouns present in the testing set is absent in the
training set, e.g., training data do not have any text with verb ‘walk’ or noun ‘doorway’. Hence,
the system is required to learn transferable knowledge from the training data to perform localiza-
tion for novel events based on unseen queries.

for unseen events. Moreover, as textual annotations are expensive and time consuming
[34], it is impossible to collect videos of all possible events and textual descriptions and
learn models with the collected data. Hence, the applicability of current text-based tem-
poral localization systems are severely limited to a small set of events and the problem
of localizing novel/unseen events based on unseen text queries remains unaddressed in
the current literature.

In this work, our goal is to temporally localize video moments based on text queries,
where both the video moments and text queries are not observed/available during train-
ing. Towards this goal, we learn transferable knowledge from seen events and queries
and utilize it to localize novel/unseen events. We hypothesize that temporally relevant
moments corresponding to unseen text queries and those corresponding to seen text
queries are likely to contain shared concepts, if the unseen query and the seen query are
semantically relevant. For instance, in Figure 1, moment corresponding to the unseen
text query ‘Person walking through the doorway’ from the testing set has similarities
to the moment corresponding to seen text query ‘Person running to the door’ from
the training set. Therefore, instead of localizing moments only based on its encoded
representation, we formulate the inference task of localization as a relational prediction
problem. The likelihood of a candidate moment to be the correct one based on an unseen
text query depends on its relevance to the moment corresponding to the semantically
most relevant seen query. We term this moment corresponding to the semantically most
relevant seen query as the support moment. To learn a proper relational system that
can localize novel events, we simulate the support moment based relational inference
on the available training data during training. As a result, the system learns to localize
moments based on relational reasoning, instead of directly localizing based on observed
moment representations. Our motivation behind the approach is that a relational system
learned on seen events/queries is transferable to the unseen events/queries [51]. We term
our approach as Temporal Localization using Relational Reasoning (TLRR).

Our problem is related to the zero-shot paradigm (where the objective is to adapt
models to perform different tasks on the unseen or unobserved classes) as we utilize
seen moment-text pairs to infer on the unseen events [61, 83, 75, 25, 38]. However, those
zero-shot approaches are not directly applicable to our problem setup. For example, [76]
assumes unseen classes are known in advance and uses the information to mine common
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semantics for seen classes and unseen classes for zero-shot temporal activity detection.
However, text-based annotations of events are not limited to a fixed set of classes and
the unseen queries are not known beforehand Again, [26, 65, 8] perform retrieval across
multiple modality data in the zero-shot setting. These works consider images with spe-
cific classes, and utilize the word embedding space to transfer knowledge between seen
classes and unseen classes. However, in a video, textual descriptions refer to multiple
entities, interactions of multiple entities, and different activities in a combined manner
that is not expressible by a single class. As a result, directly utilizing label embeddings
is not enough to transfer knowledge from seen events/queries to unseen events/queries.
We will demonstrate the advantage of our proposed TLRR approach over zero-shot ap-
proaches and other recent temporal localization approaches on two benchmark datasets.
The following are the main contributions of our work:

– We address a novel and practical problem of temporal localization of video moments
based on unseen text queries.

– We hypothesize a conceptual relation between semantically relevant moments and
propose a relational reasoning based temporal localization approach, TLRR, which
can learn transferable knowledge from seen events and localize novel events based
on unseen text queries.

– We reorganize two existing text-based temporal localization datasets (Charades-STA
[11] and ActivityNet Captions [23]) for our proposed novel problem setting. Em-
pirical results on these two text-based video moment localization datasets show that
our proposed approach can reach up to 15% absolute improvement in performance
compared to existing localization approaches.

2 Related Works

Temporal Localization of Moments. Temporal localization of moments in a video
based on text query was introduced by [11, 3]. Recently, there are many works that ad-
dress the problem both in presence of strong supervision (temporal endpoints are known
for each query) [59, 32, 5, 13, 63, 72, 68, 21, 33, 79, 14, 69, 80, 78, 16, 15, 17, 29, 44, 71,
35, 6, 56, 31, 74, 64, 73, 20, 37, 54, 9, 77, 81, 57, 82, 30, 62, 50, 12] and weak supervision
(only video-text correspondence is known) [34, 27, 52, 67, 7, 58, 53]. Among the recent
works on temporal localization of moments in the fully supervised setting, [68] per-
forms semantic conditioned dynamic modulation, [71] relies on dense regression based
approach, [35] utilizes both local and global interaction for video grounding. Recently,
[36] proposes text-based temporal localization without query annotation. Unlike our
setting, they do have access to videos of all types of events and can optimize their
model for all types of events in a weakly supervised manner. Hence, none of these
works address the problem of localizing novel events based on unseen text queries.
Zero-shot Learning (ZSL). ZSL aims to do inference task on classes whose instances
may not have been seen during training [61, 83, 75, 25, 38]. Initial works on ZSL were
attribute-based [24, 40]. However, attribute-based ZSL has poor scalability issue and
semantic embedding of labels are a good alternative for attribute [66]. Most of the works
that utilize semantic embedding based learning, focus on the association of visual and
semantic information by linear compatibility [10, 1, 2, 45], non-linear compatibility [49,
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60] or in a hybrid way [39]. To the best of our knowledge, only [76] works on activity
detection in ZSL setup. However, [76] is limited to work on activity labels and can not
be adapted directly for moment localization of unseen text queries.
Zero-shot Cross Modal Retrieval (ZS-CMR). ZS-CMR aims to perform retrieval
across multiple modality data in the zero-shot setting. They train the retrieval model
with limited categories to support cross-modal retrieval on new categories [26]. There
are few works that consider retrieval between visual and textual modality with ZS-CMR
setting [26, 65, 8]. However, these works are limited by the use of specific class infor-
mation of the images to transfer knowledge between seen classes to unseen classes.
Relational Reasoning. Relational reasoning concept has been applied to different vi-
sion applications, i.e., visual question answering [46, 43], deep reinforcement learning
[70], few-shot learning [51], self supervised learning [41]. [51] is the closest to the pro-
posed TLRR and uses relational reasoning for zero-shot learning. However, our work
differs in several ways: (i) we do not work with a fixed set of labels, (ii) our relational
module learns to identify relations between visual information rather than learning to
identify relations between visual and semantic information, and (iii) our proposed prob-
lem setup requires the model to identify intra-video subtle differences between mo-
ments, whereas [51] learns to differentiate classes.

3 Methodology

This section details the TLRR approach for the task of temporal localization of novel
events. First, we define the problem statement (3.1) and discuss the motivation and con-
cept of our proposed TLRR approach (3.2). Then we discuss the details of the frame-
work (3.3, 3.4) and the model learning procedure (3.5).

3.1 Problem Statement

Let Str = {(v, q, (τs, τe))|v ∈ Vtr, q ∈ Qtr, τs, τe ∈ [0, T ]} be the training set of
video-sentence pairs for seen queries where Vtr is the set of all training videos with
maximum duration T , Qtr is the set of seen queries, (τs, τe) are the ground truth tem-
poral endpoints for a query. For a given test-set Ste = {(v, q)|v ∈ Vte, q ∈ Qte} with
video-sentence pairs, our task is to predict the set of temporal endpoints {(τs, τe)}. We
consider that Qtr ∩ Qte = ∅, i.e., queries in test-set are not seen during training. As
a result, Vte contains events that are not present in Vtr. Additionally, we consider that
Str is available during inference.

3.2 Localization Inference Schema

Existing temporal localization approaches [68, 35, 78] learn to encode fused moment-
text representations. They either follow candidate moment sampling and encoding pro-
cess to predict overlap scores (Figure 2 (a)) [68, 78] or summarize the whole video based
on query encoding and segment level encoding to regress temporal endpoints (Figure
2 (b)) [35]. In both cases, moment representations are directly optimized for available
seen events. As a result, the models get tuned to the available events in the training
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Fig. 2. A brief illustration of our novel text-based temporal localization approach. While existing
works learn to encode video segments to identify the correct moment ((a) and (b)), we consider
relational reasoning between two semantically relevant moment for localization purpose (c).

set and doesn’t necessarily learn to generalize for unseen events. Since, our objective
is to localize events which are not available during training, we deviate from the con-
ventional approaches and propose a novel approach on how to address the text-based
temporal localization task. For our proposed TLRR, we hypothesize that the correct
moment corresponding to the unseen text query and the moments corresponding to the
semantically relevant seen queries will contain shared concepts or similarities. There-
fore, to identify the correct moment in a video based on an unseen text query, instead
of directly predicting based on the moment-text representation, we utilize semantically
relevant seen events. In that regard, we formulate the localization inference as a rela-
tional reasoning problem between two semantically relevant moments.

For a given video and unseen text query, semantically relevant moments can be iden-
tified based on the query sentence semantics. Recent advances in Natural Language Pro-
cessing (NLP) unfold many sentence encoder models which are trained on large corpus
of text data in self-supervised or unsupervised manner. These models are able to capture
wide range of sentence semantics and can be transferred to other NLP tasks. Our idea is
to use these sentence encoders to find semantically relevant moments. In our work, we
utilize universal sentence encoder [4], which is also able to capture sentence semantics,
to find semantically relevant moments. Figure 2 (c) clearly illustrates our localization
inference scheme. Given the unseen query, instead of directly inferring overlap scores
from moment-text fused representation, we first identify semantically relevant query
and it’s corresponding moment using universal sentence encoder. We utilize this se-
mantically relevant moment as the support moment and consider relational reasoning
between the support moment and the candidate moments to identify the correct mo-
ment. Our motivation behind this approach is that this relational inference system can
be learned using available training data and the learned relational model is transfer-
able to unseen cases [51]. Our framework consist of candidate moment encoder, fusion
network, support moment encoder and relational reasoning module. In the following
sections, we discuss the framework and how we utilize available training data to learn
a proper relational inference system.

3.3 Framework

As illustrated in Figure 3, our framework consists of a candidate moment encoder that
generates a text-fused representation of candidate moments, a support moment encoder
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Fig. 3. Overview of the framework and the training of the relational reasoning based temporal
localization approach. Candidate moment and support moment representations are aggregated to
form positive pairs (positive candidate, positive support) and negative pairs (negative candidate,
positive support)/( positive candidate, negative support). The relational module is trained to esti-
mate the relational scores based on the pairs.

that encodes the support moment, and a relational prediction module to infer based on
the relational reasoning between candidate moment and support moment. To learn the
relational reasoning system utilizing available training samples, we mimic the relational
inference task during training. At train-time, for seen queries in training set, we infer the
overlap scores based on the relation between candidate moment and support moment,
where the ground truth moment is used as the positive support moment. All the modules
and the learning procedure are described in the following sections.

Visual Feature Extraction. We perform fixed interval sampling over the frames of the
videos and sample l non-overlapping clips per video. For each clip, we extract 2D/3D
convolutional feature, resulting in a set of l clip features {ci}li=1. Here, ci is the feature
representation of the ith clip.

Text Feature Extraction. We use GloVe word embedding [42] and Bi-directional LSTM
network [18] for representing text queries. For each word s of the query sentence q, we
use Glove word embeddings to obtain its initial embedding vectors, which are fed se-
quentially into a three-layer bidirectional LSTM network. The last hidden state q̂ is
used as the feature representation of the input sentence.

Candidate Moment Encoding and Modality Fusion. Clip representations {ci}li=1,
sampled from each video is used to construct moment candidate representations. For
each moment candidate, we max-pool the corresponding clip features across the spe-
cific time span. For example, moment corresponding to ith to (i + n)th clips will
be represented by f i:i+n = MaxPool(ci, . . . , ci+n), where f ∈ Rdf (df is the
feature dimension). Moment encodings and text encodings are projected in the same
subspace and their dot product is taken as the fused moment-text representation by,
e = (W qq̂).(W ff). Here, W q and W f are the learnable parameters. We stack the
moment-text representation e as a 2D feature map, similar to [78], and use L convo-
lutional layers to further encode the representations. As a result, we obtain a set of
candidate moment representations {mi}Ni=0, where N is the total number of candidate
moments from a video and mi ∈ Rdm , where dm is the feature dimension of the can-
didate moment representations.



Text-based Temporal Localization of Novel Events 7

Support Moment Encoder. We use a feed-forward network as the support moment
encoder. For a support moment consisting of n consecutive clips {ci}ni=1, where ci ∈
Rdm , we first average pool the n clip representations to a single representation s′ ∈
Rdm . If we have multiple support moments, then we average pool all the support mo-
ment representations into a single representation. Then we use a feed-forward network
to obtain the final support representation s by,

s = ReLU(W ss′ + bs) (1)

Here, W s and bs are the learnable parameters and s ∈ Rdm . We keep the feature
dimension of support moments the same as to candidate moment feature dimension dm.
The input to the support moment encoder varies in the training stage and inference stage.
In the training stage, the correct candidate moment is used as the support moment. In
the inference/testing stage, based on the unseen test query, most semantically relevant
moments from the training set are used as the support moments. These moments work
as the helper to find the correct moment from the video.

3.4 Relational Prediction

The relational module is a function Zθ(·) parameterized by learnable weights θ and
modeled by a feed forward neural network. Input to the relational module is a pair of two
representations xi and xj , where one element represents the selected support moment
s and the other element represents a candidate moment mi from the set of candidate
moment representations {mi}Ni=1. We use concatenation as the aggregation function
to get aggregated representation of xi and xj as acat(xi,xj). For a pair of support
moment representation s and ith candidate moment representation mi, the relational
module outputs a overlap score ϕi by,

ϕi = Zθ(acat(s,mi)) (2)

To confirm that the relational reasoning module Zθ predicts based on the relation
between pair of representations and not based on a single representation, Zθ requires
to maintain the commutative property, i.e., Zθ(acat(s,mi)) = Zθ(acat(mi, s)). How-
ever, the concatenation operation acat(·, ·) is not commutative. Therefore, to enforce
the commutative property of the relational module, we compute the overlap score for
the pair of elements s and mi by,

ϕi =
1

2

[
Zθ(acat(mi, s)) + Zθ(acat(s,mi))

]
, (3)

3.5 Learning Relational Inference

In our learning setup, a training sample consists of a video v, a text query q, and tempo-
ral ground truth information for the query (τs, τe). Instead of learning to directly predict
the overlap score for each candidate moment, we learn to infer the overlap scores based
on the relation with most relevant support moments. To train this relational inference
system, we sample two types of support moment: i) positive support moment and ii)
negative support moment. For each query in a video, we extract the ground truth seg-
ment of the video and use it as the positive support moment s+. Again, for each query in
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a video, we select semantically unrelated query in the trainset and use its corresponding
moment as the negative support moment s−. Our objective is to distinguish intra-video
candidate moments based on the support moment. To do so, we compute overlap pre-
diction loss Lintra for a set of pairs X 1={(mi, s

+)}, which consists of pairs of all
candidate moments and positive support moment in a video. To guide the learning of
distinguishing intra-video candidate moments through relational inference system, we
use scaled tIoU (temporal Intersection-over-Union) value with ground-truth segment
as the supervision signal. We compute the scaled tIoU by,

yi =


0 gi ≤ tmin
gi−tmin

tmax−tmin
tmin < gi < tmax

1 gi > tmax

(4)

Here, gi is the ground truth tIoU for the ith candidate moment and tmin, tmax are
two thresholds to compute yi. For a video with N candidate moments, Lintra is realized
by binary cross entropy loss as,

Lintra = − 1

N

∑
X 1

[
yi log(ϕi) + (1− yi) log(1− ϕi)

]
(5)

Here, ϕi is the overlap score computed using Eqn. 3. To ensure that the model
predicts the overlap score based on the relationship between the candidate moment
and the support moment, we use the sampled negative support moments s− to train
the model. In each video, candidate moments with tIoU > tmin are considered as
positive candidate moment m+. For each video with P positive candidate moments, we
formulate a set of pairs X 2={(m+

i , s
−)} and compute negative relational loss Lneg by,

Lneg = − 1

P

∑
X 2

log(1− ϕi) (6)

The two losses are jointly considered for training our relational inference model,
with λ balancing contributions:

Ltotal = Lintra + λLneg (7)

We compute Ltotal for all seen video-text query pairs in the training set and optimize
the relational inference model by minimizing the total loss.

3.6 Inference for Unseen Queries

During inference, given a video and an unseen text query, we are required to localize
the correct moment. We use the universal sentence encoder [4] to find semantically
relevant queries from the training set. Then the corresponding moment to the relevant
query is used as a support moment. Based on the video, support moments, and the un-
seen query, the learned relational model predicts overlap score ϕ for different temporal
granularities in one forward pass. All the predicted segments are ranked and refined
with non-maximum suppression (NMS) according to the predicted ϕ. Afterwards, the
final temporal grounding result is obtained.
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4 Experiments

In this section, we evaluate the performance of proposed TLRR. We discuss how we
reorganized existing datasets for the introduced problem setting in 4.1. We report and
analyze the results both quantitatively and qualitatively in 4.4.

4.1 Reorganized Datasets

Existing benchmark temporal moment localization dataset splits are not designed for
the task of temporal localization of novel events based on unseen text queries. Instead,
trainset and testset data are sampled from the same distribution, and text queries in the
testset overlap with text queries in the trainset. We reorganize two of the benchmark
datasets namely Charades-STA [11] and ActivityNet Captions [23] to create splits ac-
cording to our problem setting. For both datasets, we create splits based on the verbs
and nouns present in the text queries. First, we combine all the annotations of the train-
set and testset videos of the dataset. To create the splits, we consider a set of nV verbs
and nN nouns present in the combined annotation. We consider it the set of seen verbs
and seen nouns. Then, we identify videos that contain at least a single query that has a
verb or noun not present in the mentioned set. In the selected videos, queries which do
not have verbs or nouns from the mentioned set are collected as unseen testset split and,
queries which have verbs or nouns from the mentioned set are collected as seen testset
split. The training set is created from the rest of the videos, with queries that contain
either verb or noun present in the mentioned set. We exclude queries which contains
verb or noun from both seen set and unseen set. We use spaCy [19] to parse verbs and
nouns from text queries. These reorganized datasets reflect a realistic setting as datasets
are usually composed of recurring events of limited concepts. However, a localization
system may encounter varied types of events in real-world applications. Details of the
nouns and verbs selected to create the split are provided in the supplementary material.
Excluding queries which contains verb or noun from both seen set and unseen set re-
sults in reduced number of moment-sentence pairs in the reorganized dataset. However,
the size of the dataset doesn’t have impact on the significance of our proposed problem
setup, which is experimentally evaluated in the supplementary material.
Charades-STA Unseen. Charades-STA dataset contains a total of 6,670 videos where
5,336 and 1,334 are the number of training and testing videos. Textual annotations
in Charades-STA has direct temporal correspondence with activity annotation of the
Charades dataset [47]. We combine training and testing set annotations and consider
nV = 20 and nN = 40 (excluding ‘person’ noun) for creating Charades-STA Unseen
dataset. In this way, we have Charades-STA Unseen dataset with 5525, 1665, and 867
training, unseen testing, and seen testing moment-sentence pairs respectively.
ActivityNet Captions Unseen. ActivityNet Captions [23] dataset is proposed for dense
video captioning task. Each video contains at least two ground truth segments and each
segment is paired with one ground truth caption [63]. This dataset contains around 20k
videos which are split into training, validation, and testing set with 50%, 25%, and
25% ratio respectively. Textual description for only the training and validation set is
given. We combine training and validation set and consider nV = 70 and nN = 250
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Table 1. This table reports unseen text query based temporal moment localization performance
of TLRR, compared against several approaches, on Charades-STA Unseen dataset.

Method R@1, R@1, R@5, R@5, mIoUIoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7
DeViSE [10] 29.98 11.29 71.42 39.81 -
ESZSL [45] 23.90 10.13 60.50 34.53 -
SCDM [68] 28.22 11.89 54.25 32.95 28.63
LGI [35] 29.01 12.85 - - 29.62
2D-TAN [78] 31.05 13.33 70.75 36.94 29.88
TLRR 33.15 16.22 77.66 42.40 31.29

for creating ActivityNet Captions Unseen dataset. In this way, we have ActivityNet
Captions Unseen dataset with 5669, 2553, and 710 training, unseen testing, and seen
testing moment-sentence pairs respectively.

4.2 Evaluation Metric

We use “R@k, IoU@m”, which reports the percentage of at least one of the top-k
results having Intersection-over-Union (IoU) larger than m [11]. For a text query,
“R@k, IoU@m” reflects if one of the top-k retrieved moments has IoU with the ground
truth moment larger than the specified threshold m. So, “R@k, IoU@m” is either 1 or
0 for each text query. We compute it for all the text queries in the testing sets and report
the average results for k ∈ {1, 5} and m ∈ {0.50, 0.70}. We also compute mIoU where
mIoU is the average IoU over all testing samples.

4.3 Implementation Details

We use VGG feature [48] for Charades-STA Unseen dataset. For ActivityNet Captions
Unseen dataset, we use extracted C3D features [55]. The number of frames in a clip is
set to 4 for Charades-STA Unseen, and 16 for ActivityNet Captions Unseen and we use
non-overlapping clips for both datasets. The number of sampled clips N is set to 16 for
Charades-STA Unseen, 64 for ActivityNet Captions Unseen. For the candidate moment
encoder, we adopt a 4-layer convolution network with a kernel size of 5 for Charades-
STA Unseen and a 4-layer convolution network with a kernel size of 9 for ActivityNet
Captions Unseen. For both datasets, the support moment encoder is a single-layer feed-
forward network and the relational prediction network is a two-layer feed-forward net-
work. The proposed network is implemented in TensorFlow and trained using a single
RTX 2080 GPU. We use mini-batches containing 32 video-sentence pairs and use Adam
[22] optimizer with a learning rate of 0.0001. the dimension of both candidate moment
representation dm and support moment representation ds is set to 512 for both datasets.
We set λ=3 empirically in Eqn 7 for both datasets. The scaling thresholds tmin and
tmax of Eqn. 4 are set to 0.5 and 1.0 respectively for both datasets. Non-maximum sup-
pression (NMS) with a threshold of 0.5 is applied during the inference. We train TLRR
for 50 epochs. We select the checkpoint which has the best average performance across
metrics for seen queries.
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Table 2. This table reports unseen text query based temporal moment localization performance
of TLRR, compared against several approaches, on ActivityNet Captions Unseen dataset.

Method R@1, R@1, R@5, R@5 mIoUIoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7
DeViSE [10] 5.07 2.00 10.46 4.05 -
ESZSL [45] 4.72 1.85 11.83 4.48 -
SCDM [68] 19.22 8.22 46.38 23.58 23.97
2D-TAN [78] 19.15 10.26 38.78 24.01 21.70
VSLNet [74] 19.23 9.99 - - 25.32
TLRR 23.19 13.24 53.31 36.66 26.35

4.4 Result Analysis

The following experiments are conducted to evaluate the performance of TLRR:

- We compare the performance of TLRR for the proposed task of temporal localization
of novel events based on unseen text queries with other zero-shot approaches and
conventional temporal localization approaches.

- We study the models competence for relational reasoning.
- We analyze the performance of TLRR for temporal localization of seen events com-

pared to other approaches.
- We perform ablation study for different loss components.
- We show qualitative examples that verify the significance of the proposed TLRR.

Temporal Localization of Novel/Unseen Events. Since ours is the first work on tem-
poral localization of novel events, there are no existing approaches that we can directly
compare with. As our problem setup is closely related to zero-shot settings, we adapt
two zero-shot learning approaches namely DeViSE [10] and ESZSL [45] for this prob-
lem setup. We also compare with some of the state-of-the-art temporal localization
approaches with publicly available codes, e.g., 2D-TAN [78], SCDM [68], LGI [35],
and VSLNet [74], by training those models using our reorganized training splits.

Table 1 and Table 2 illustrate the TLRRs’ performance for temporal localization
of novel event based on unseen text query and compare it with other approaches for
Charades-STA Unseen and ActivityNet Captions Unseen dataset respectively. For the
Charades-STA Unseen dataset, the performance of different baseline approaches are
comparable among them. However, TLRR provides 2% − 7% absolute improvement
over the best scores of compared approaches over all the reported metrics. In Table
2, baseline zero-shot approaches (DeViSE, ESZSL) are performing poorly for Activi-
tyNet Captions Unseen dataset. This is because the text queries are complex compared
to Charades-STA Unseen and it requires fine-grained analysis of longer videos in Activ-
ityNet Caption Unseen. We observe 3%− 15% absolute improvement over best scores
of compared approaches in the ActivityNet Captions Unseen dataset.

Relational Reasoning Performance Analysis. Since TLRR’s performance is depen-
dent on its ability to reason on the relationship of two different moments, in Table 3,
we analyze the competence of our relational reasoning module Zθ for Charades-STA
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Table 3. This table reports unseen text query based novel event localization performance using
different types of support moments to analyze TLRR for Charades-STA Unseen dataset.

Support Moment R@1, R@1, R@5, R@5, mIoU
IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

Irrelevant 20.30 11.05 62.58 33.93 22.48
Random 28.71 14.47 73.57 40.24 28.40
Relevant 33.15 16.22 77.66 42.40 31.29

Unseen dataset. We consider three scenarios: i) Irrelevant: based on the unseen text
query, retrieve the seen query from the semantic embedding space that are furthest
away or most irrelevant and use the corresponding moment as the support information,
ii) Random: retrieve random seen query from the training set and use the corresponding
moment as the support information, and iii) Relevant: retrieve the nearest/most relevant
seen query from the semantic embedding space and use the corresponding moment as
the support information (i.e., our proposed TLRR). We observe that when irrelevant
queries are retrieved and their corresponding moment is used as the support, the per-
formance goes down. Since the moment corresponding to a irrelevant query does not
contain shared concept/ similarities with the correct moment, the relational module ex-
pectedly fails to identify the correct moment. When random seen queries are selected,
the performance is better compared to the irrelevant case. We obtain the best perfor-
mance when the closest seen query is selected from the semantic embedding space.
Temporal Localization of Seen Events. We further report the performance of differ-
ent approaches when evaluated on the testing split of seen queries in both the datasets
on Table 4 and Table 5. Although the main focus of this paper is temporal localiza-
tion of unseen events, this experiment is presented to evaluate how the performance of
different methods changes for seen events compared to localization of unseen events
(Table 1 and Table 2). We expect a method to work slightly better on localizing the seen
events compared to the unseen ones, however, a drastic/large change would indicate
poor generalization ability of the model.

For the compared methods and baselines, we observe that there is a significant dif-
ference in performance when the same model is evaluated in the testing split of seen
queries and testing split of unseen queries for both datasets comparing Table 1 and
Table 2 with Table 4 and Table 5 respectively. Not surprisingly, both the conventional
temporal localization approaches (i.e., SCDM and 2D-TAN) show a drastic change in
performance across metrics in both datasets. The average difference in performance is
reported by ∆avg in Table 4 and Table 5. SCDM shows 19.80% average difference
in Charades-STA and 13.24% average difference across metrics in ActivityNet in lo-
calization performance of seen queries compared to localization performance of un-
seen queries. Similarly, 2D-TAN shows average difference (across metrics) of 5.89% in
Charades-STA and 16.18% in ActivityNet in localizing seen queries compared to un-
seen. Though the zero-shot based approaches (DeViSE and ESZSL) show small gap in
performance between seen and unseen events, which is expected due to the approaches
generalization ability, they are unable to maintain a proper level of localization perfor-
mance compared to other methods. However, the proposed TLRR approach shows a
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Table 4. This table reports seen text query based temporal moment localization performance of
TLRR on Charades-STA Unseen dataset. Here, ∆avg refers to average performance difference for
seen events and unseen events (Table 1) for a specific method. From the lower value of ∆avg , it
is evident that TLRR generalizes significantly better than other temporal localization approaches.

Method R@1, R@1, R@5, R@5,
∆avg ↓IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

DeViSE [10] 36.34 15.86 77.66 44.10 5.36
ESZSL [45] 37.50 18.40 72.34 42.13 10.34
SCDM [68] 50.46 28.00 73.49 54.86 19.80
2D-TAN [78] 37.95 18.45 76.70 42.56 5.89
TLRR 34.83 20.76 78.78 48.56 3.37

Table 5. This table reports seen text query based temporal moment localization performance of
TLRR on ActivityNet Captions Unseen dataset. ∆avg refers to average performance difference
for seen events and unseen events (Table 2) for a specific method. From the lower value of ∆avg , it
is evident that TLRR generalizes significantly better than other temporal localization approaches.

Method R@1, R@1, R@5, R@5,
∆avg ↓IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

DeViSE [10] 12.07 5.40 18.18 8.52 5.64
ESZSL [45] 12.64 5.40 19.74 8.66 5.89
SCDM [68] 34.66 20.74 59.51 35.37 13.24
2D-TAN [78] 34.65 22.39 57.18 42.68 16.18
TLRR 27.46 17.61 60.42 49.44 7.13

significantly lower change in performance, e.g., 3.37% average in Charades-STA and
7.13% average in ActivityNet Captions.

This indicates the significance of the problem setup and generalization ability of
TLRR. Unlike the conventional temporal localization approaches, TLRR is not de-
signed to specifically focus on the seen events. In Table 4 and Table 5, we observe
that model optimized to do localization inference directly based on the candidate mo-
ment representation overall performs better compared to TLRR for types of events that
are already seen in training. However, direct localization limits these models’ capacity
to a small set of events which is evident by the significant gap between performances for
seen and unseen events. Instead, our proposed TLRR approach is able to retain a com-
petitive performance for the seen queries and boost the performance for unseen queries
resulting in reducing the performance gap between seen and unseen events. Also, our
proposed TLRR is able to show comparable performance (please refer to supplemen-
tary material) on the original temporal localization dataset, even though TLRR is not
optimized for seen events and have a relatively simple base architecture.

Effect of Lneg in learning TLRR. TLRR uses Lintra and Lneg to learn relational
localization system. Effectiveness of these two loss components for distinguishing intra-
video moments by relational prediction is evident from Table 1, Table 2, and Table 3.
We consider two setups, i) TLRR trained with Lintra and ii) TLRR trained with Lintra

+ λLneg . We observe that when only Lintra is used to train TLRR, there is almost
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(a)

Query: The person laughs

Seen query: The person starts smiling

Seen query: Person putting books 
on a shelf in the hallway

10.7s

0s

0s

10.2s

20.4s 27.25

23.8s 27.25

(b)

(d)

(a) Ground truth (b) 2D-TAN prediction

(c)

(c) Prediction using irrelevant support (c) TLRR

Retrieved relevant 
Support moment for TLRR

Sampled irrelevant 
support moment for (c)

Fig. 4. Given the query ‘The person laughs’ and the corresponding video, this figure shows: (a)
ground truth time of the moment, (b) predicted moment by 2D-TAN, (c) predicted moment when
irrelevant moment is used as support, and (d) predicted moment using retrieved relevant support
moment (TLRR). While (b) and (c) result in failure, TLRR is able to detect the correct moment
using relational reasoning.

no difference in performance (difference within 1%) for using relevant or irrelevant
moments as input to the support encoder. However, there is 5% − 15% difference in
Charades-STA Unseen dataset for using relevant or irrelevant moments as input to the
support encoder when Lintra + λLneg is used to train TLRR. So, Lneg enforces the
model to predict based on the relation.
Qualitative Result. In Figure 4, we illustrate an example case of our system’s success.
Given the query ‘The person laughs’ and the corresponding video, Figure 4 shows:
(a) ground truth time of the moment, (b) predicted moment by 2D-TAN, (c) predicted
moment when irrelevant moment is used as support, and (d) predicted moment using
retrieved relevant support moment. Person laughing is a difficult event to detect as it
encompasses a small region of the frame and results in small temporal variation in the
feature. Without any notion of how the activity is like, it is difficult to detect, which is
reflected by the failure case of (b) and (c). However, TLRR is able to detect the correct
moment using relational reasoning.

5 Conclusion

In this paper, we address the novel problem of temporal localization of unseen/novel
events based on unseen text queries. The problem of identifying novel events in video
is important and practical because not every kind of event can be expected to be within
the training set. This allows for generalization of temporal localization methods to novel
scenarios. We propose a relational reasoning based framework hypothesizing a con-
ceptual relation between moments corresponding to semantically relevant queries. Ex-
tensive experiments on reorganized Charades-STA and ActivityNet Captions datasets
demonstrate the effectiveness of the proposed framework compared to several base-
lines in localizing video moments from text queries. Our code and dataset splits will be
publicly available. Though support moment based relational prediction can reduce the
performance gap between seen and unseen events, it is burdened with the extra compu-
tation of relevant moments, which is computationally expensive. Future work can focus
on this issue.
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