
ODDS: Real-Time Object Detection using Depth Sensors on
Embedded GPUs

Niluthpol Chowdhury Mithun
University of California, Riverside, CA

nmith001@ucr.edu

Sirajum Munir
Bosch Research and Technology Center, PA

sirajum.munir@us.bosch.com

Karen Guo
University of Minnesota, MN

guoxx431@umn.edu

Charles Shelton
Bosch Research and Technology Center, PA

charles.shelton@us.bosch.com

ABSTRACT
Detecting objects that are carried when someone enters or exits
a room is very useful for a wide range of smart building applica-
tions including safety, security, and energy e�ciency. While there
has been a signi�cant amount of work on object recognition using
large-scale RGB image datasets, RGB cameras are too privacy in-
vasive in many smart building applications and they work poorly
in the dark. Additionally, deep object detection networks require
powerful and expensive GPUs. We propose a novel system that we
call ODDS (Object Detector using a Depth Sensor) that can detect
objects in real-time using only raw depth data on an embedded
GPU, e.g., NVIDIA Jetson TX1. Hence, our solution is signi�cantly
less privacy invasive (even if the sensor is compromised) and less
expensive, while maintaining a comparable accuracy with state of
the art solutions. Speci�cally, we resort to training a deep convo-
lutional neural network using raw depth images, with curriculum
based learning to improve accuracy by considering the complexity
and imbalance in object classes and developing a sparse coding
based technique that speeds up the system ⇠2x with minimal loss
of accuracy. Based on a complete implementation and real-world
evaluation, we see ODDS achieve 80.14% mean average precision
in object detection in real-time (5-6 FPS) on a Jetson TX1.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-physical
systems; Embedded systems; Real-time system architecture; • Hard-
ware→ Sensor applications and deployments;

KEYWORDS
Object detection, Embedded systems, Deep learning, Curriculum
learning, Network pruning

ACM Reference format:
Niluthpol Chowdhury Mithun, Sirajum Munir, Karen Guo, and Charles
Shelton. 2017. ODDS: Real-Time Object Detection using Depth Sensors on
Embedded GPUs. In Proceedings of IPSN ’18, Porto, Portugal, April 11–13,
2018, 12 pages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IPSN ’18, April 11–13, 2018, Porto, Portugal
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5544-5/17/11.
https://doi.org/10.1145/3137133.3141461

https://doi.org/10.1145/3137133.3141461

1 INTRODUCTION
Detecting humans and objects that are carried inside and outside of
rooms in buildings is very useful for a wide range of smart building
applications including safety, security, and energy e�ciency. For
example, if it is detected that someone is entering a room with a
box and the box is not taken back, it could be a security threat. As
gun violence is on the rise in the US, if it is detected that someone
is entering with a gun, the neighboring people and local police can
be alerted. Also, it can be useful for reminding people if someone
enters a room with an umbrella or a laptop and forgets to take
it back when leaving (e.g., by playing a chime). It is also useful
for controlling Heating Ventilation and Air Conditioning (HVAC)
systems to save energy. For example, in a commercial space, if
someone is leaving his o�ce with a backpack in the afternoon, it
may mean he is leaving for the day, whereas if he is leaving with
a laptop, it may mean he is going out for a meeting, and leaving
empty handed may mean that he is leaving for a restroom/lunch
break. This additional contextual information can be useful for
controlling HVAC systems e�ciently.

There has been a signi�cant amount of work on image recog-
nition/classi�cation (AlexNet [29], GoogleNet [49]) and object de-
tection (SSD [32], FasterRCNN [43]). Given an image, the former
one attempts to classify the image to a single/multiple categories,
whereas the latter does so in addition to localizing the objects and
hence the latter one is more challenging. Object detection solu-
tions can detect multiple objects of the same category (and their
positions) in an image that can not be done by image classi�cation
techniques. Existing solutions for object detection are mainly based
on RGB images. However, RGB camera based solutions may not
be suitable for many smart building applications as RGB cameras
are too privacy invasive to be deployed in many settings, e.g., in
o�ce rooms, and they work poorly in low illumination environ-
ments. The solutions that use depth sensors for object detection
either use RGB data as complementary to the depth data [19] or
use the corresponding RGB data to �lter out noise in the depth data
[20]. Our solution is based only on depth sensor data as we feed
noisy depth data directly into a CNN and hence it saves the cost
of a corresponding RGB camera. Also, as a result, it is much less
privacy invasive (even if the sensor is compromised) and works in
a completely dark environment.

Depth sensors bring additional challenges to generic object de-
tection. For example, many pre-trained RGB image classi�cation
networks are available with excellent generalization ability and

IPSN ’18, April 11–13, 2018, Porto, Portugal Mithun et al.

almost all RGB based object detection networks are built on top of
a pre-trained RGB image classi�cation network utilizing transfer
learning. Transfer learning is very common in practice, as training
a deep CNN from scratch needs a dataset of a su�ciently large
size, which is rare for most tasks. Hence, most of the RGB based
CNN networks use a previously trained CNN (trained on ImageNet,
which has millions of images) on large dataset as initialization and
then �netune the network on the new task. However, the ability
to transfer decreases signi�cantly as the distance between task in-
creases [55]. There is hardly any raw depth image based pre-trained
network available, which makes it very di�cult to train deep CNN
based depth image based object detection network for our task.
Signi�cant noise in depth images and limited availability of depth
images on the web makes training even more di�cult. Also, most
proposed solutions for object detection require the use of powerful
and expensive GPUs [43], e.g., Nvidia GTX 1080 Ti costs ⇠$750 and
K40 costs ⇠$3000 whereas we perform the entire processing on
a cheaper embedded GPU Jetson TX1 (the development kit costs
⇠$500 which includes a TX1 module in a computer). This is very
challenging as embedded GPUs are extremely weak in terms of
computation power. As an example, when porting an object detec-
tion solution from a Nvidia GTX 1080 Ti to a TX1, we see a drop of
frame rate from 69.33 FPS to 5.9 FPS.

Our proposed system is called ODDS (Object Detector using a
Depth Sensor). It requires mounting of a depth sensor at a doorway
looking downwards as shown in Figure 1. Mounting in such a
way helps to avoid occlusion a great extent. For prototyping, we
use the depth sensor of Microsoft Kinect for Xbox One. However,
we use raw depth data and hence other depth sensors with similar
functionality will work.We use an existing object detection network
(SSD [32]) that is built for RGB images as a tool and show how
transfer learning can be used on a di�erent sensingmodality (depth).
A depth frame contains so much noise and it has so low resolution
that it is a fundamental question if objects that are a few feet away
from the sensor can be detected using it on an embedded GPU in
real-time. We address several realistic challenges to develop ODDS,
e.g., addressing class imbalance issue, determining the order of
samples for training to improve accuracy, determining techniques
to speed up to be able to run on an embedded GPU, and show
our techniques work in a completely di�erent sensing modality
(depth). We train a deep convolutional network (CNN) model based
on SSD architecture for our task. To guide the model to achieve
higher accuracy, we design a curriculum learning path for training
by utilizing our prior knowledge of training data as the order and
selection of training data helps the model to reach a better local
minimum. To improve speed, we propose a sparse coding based
�lter-level network pruning algorithm that concurrently speeds up
and compresses CNN models.

This work has the following contributions. First, we design and
implement a novel system called ODDS, which is the �rst system
that detects various types of objects including backpacks, boxes,
laptops, phones, umbrellas, cups, nerf guns (as real guns are not
allowed in the o�ce), and humans in smart buildings using raw
noisy depth images, without using the corresponding RGB image to
remove noise as in state of the art solutions. Instead of developing
another heavyweight generic object detection solution requiring

Figure 1: Placement of a depth sensor (Kinect for XBOXOne)
at the ceiling near a doorway.

extensive computation, we only consider a handful of classes rele-
vant to smart buildings, more speci�cally commercial and academic
buildings, and ODDS is the �rst system that can detect the afore-
mentioned objects on an embedded GPU e.g., NVidia Jetson TX1
in real-time. Second, we employ novel strategies to improve the
accuracy and speed of ODDS. In order to improve accuracy, in-
spired by the learning process of humans and animals, we leverage
curriculum learning to train ODDS to detect and learn objects from
simple to complex shapes instead of feeding the training samples
altogether. In order to speed up, we introduce sparse coding based
representative �lter selection using group l2,1 norm which can be
used with any o�-the-shelf deep learning libraries, in contrast to
most existing approaches that require changing the implementa-
tion of underlying frameworks, e.g., Ca�e or TensorFlow. Third,
we collect a 21 GB dataset from a commercial space containing
200K depth frames. Among these frames, around 65K depth im-
ages contain meaningful objects, where we annotate the positions
of each object (mentioned above). To the best of our knowledge,
no depth dataset exists for these objects where the depth sensor is
mounted at the ceiling looking downwards and wemake the dataset
available in [4]. Fourth, based on extensive evaluation using over
13000 depth frames, we see ODDS achieve 80.14% mean average
precision in real-time (5-6) FPS on Jetson TX1. We also benchmark
the performance in two powerful GPUs (GTX 1080 Ti, K40) and
another embedded GPU (Jetson TK1).

2 RELATEDWORK
Image Classi�cation Methods:Methods for image classi�cation
can be divided into two main categories, e.g., hand-designed feature
extractors and feature learning. Hand-designed features can be
further divided into local features and global features. SIFT [33],
HOG [15] and SURF [10] are all examples of local feature descriptors
that describe the salient regions around key points in an image.
Global image descriptors such as the color histogram [51], color
coherence vector [44], and Gist [45] describe the image as a whole.
After extracting features from images, machine learning is used to

ODDS: Real-Time Object Detection using Depth Sensors on Embedded GPUs IPSN ’18, April 11–13, 2018, Porto, Portugal

map the features to categories [52]. More recently, however, feature
extraction methods involve learning visual representations directly
from pixels using deep neural networks [29, 31], e.g., AlexNet [29],
GoogleNet, and ResNet. These deep CNNs have been trained on
millions of images and hence, they are highly capable of capturing
generic features from images. These deep CNN features are now the
state-of-the-art image features and show remarkable performance
in most recognition tasks.

Object Detection Methods: Object detection is a more chal-
lenging task than image classi�cation. Unlike image classi�cation,
which requires labeling an image to a particular category, detection
requires localizing (likely many) objects within an image and as-
signing each object a label. As the training data for object detection
is costly, the object detection networks usually utilize CNNs trained
on image classi�cation task to start with. It has been shown that a
CNN trained on image classi�cation task can lead to dramatically
higher object detection performance as compared to systems based
on hand-crafted features. The deep CNNs trained on image classi�-
cation task have been used as a starting block by almost all state of
the art deep network based object detection approaches for training
a high-capacity model as the quantity of annotated detection data
is limited.

Similar to image classi�cation, methods for object detection
can be divided into two main categories: hand-designed feature
extractors and feature learning. In [19], authors detect contours on
depth images for segmentation and quantize the outputs as features
for classifying a scene. In [9], authors use quantized local features
for detecting and segmenting objects. Current state-of-the-art relies
on transferring and �ne tuning CNN trained on RGB to depth data
[20, 48, 59]. In [47], a CNN is trained on patches in an unsupervised
way and combined with a recurrent neural network for RGB-D
object classi�cation. In [20], Region-CNN has been used to detect
objects from depth images. In [20, 59], authors propose to �ne-tune
CNN jointly based on RGB and depth image pairs. In [59], authors
jointly �ne-tune both the RGB and depth CNN utilizing a multi-
modal fusion layer which considers both inter and intra-modal
correlations. Alternatively, transferring RGB CNN model to the
depth CNN based on RGB-depth image pairs was proposed in [20].

Curriculum Learning: Curriculum learning is a training strat-
egy [11, 41], where the complexity of training data is taken into ac-
count in training by distributing/dividing training samples based on
complexity. Based on this strategy, network training usually starts
on simple tasks/examples and training is done progressively on
more di�cult tasks/examples. Curriculum learning has been shown
to be e�ective in guiding the training process to achieve better
performance in di�erent tasks [25]. Adding a pre-de�ned learning
curriculum [25] to the training can take into account the helpful
knowledge known before training and improve model performance.
Inspired by this, we design a task-speci�c learning curriculum and
construct a self-paced curriculum learning based model speci�cally
for our task.

Network Pruning: DeepIoT [54] compresses neural network
structures into smaller densematrices by �nding theminimumnum-
ber of non-redundant hidden elementswhilemaintaining application-
level accuracy. In [23], authors suggested removing weights below

a threshold, followed by �ne-tuning to recover its accuracy. How-
ever, the model loses universality and �exibility [34]. There are
some data-driven approaches, e.g., [21, 34], where authors use
randomly sampled feature maps or data points in pruning net-
works which may make model biased towards sampled data-points.
Group-sparsity regularization with loss function has been used
in [30] to regularize the structure of the network and to create a
sparse network. l1 norm based pruning was introduced in [6, 23],
which generates a sparse model. However, specialized software is
required for e�cient inference from these sparse models and most
of these models are not perfectly supported by o�-the-shelf deep
learning libraries. In contrast to these approaches, we propose an
l2,1 norm based representative �lter selection and pruning method.
Our approach does not require any data at the time of pruning and
also retains the original model structure. Our approach is perfectly
supported by any o�-the-shelf libraries.

Other Solutions: FORK [37, 38] uses a depth sensor mounted
at a ceiling to detect humans on an ARM processor. It detects heads
and shoulders by leveraging the anthropometric properties of hu-
man bodies. In [36], authors propose to mount an 8x8 pixel IR array
sensor at the side of a door to detect and count people. However,
it just uses temperature di�erence compared to the background to
detect humans instead of detecting any speci�c body parts. Hence,
any warm objects will be detected as humans. In [27], the authors
use two Unmanned Aerial Vehicles (UAVs) to perform 3D through-
wall imaging using WiFi RSSI. The solution uses Markov random
�eld modeling and can detect simple objects, e.g., L-shaped struc-
tures. Sonicdoor [28] proposes a technique to detect and identify
around 100 occupants by sensing their body shape, movement, and
walking patterns as they walk through a door instrumented with
three ultrasonic sensors. In [26], authors mount a radar sensor at a
doorway and use the re�ected energy coming from di�erent body
parts to create a weak biometric pro�le for di�erentiating people.
In [5], authors use radio tomography to detect and localize people
outdoors. In [57], authors propose to use a combination of thermal
sensors and ultra-low power coarse stereo cameras to detect the
presence of body parts at wearable power budgets. In [40], authors
propose to track multiple people in a dynamic industrial environ-
ment by leveraging CCTV camera along with the radio and inertial
sensors of each worker’s mobile phone. In [39], authors utilize
footstep induced structural vibration to identify occupants. In [53],
authors count and localize multiple individuals using radio signal
strength. In [7], authors present a radio-optical based recognition
system where a radio-optical transmitter emits a beacon whose IR
signal strength is used to track the orientation of tagged objects.

3 OVERVIEW
We use the depth sensor in Kinect for XBOX One [1] (Figure 2(a))
in this work. We mount the depth sensor at the ceiling looking
downwards near a doorway as shown in Figure 1. It has a 0.5 - 8
meters range and 70°x60° �eld-of-view (FOV). The range is good
enough to detect objects through doorways as the average height
of a �oor is 10 feet [3]. For doing the computation, we use an Nvidia
Jetson TX1 development kit [2] that contains a TX1 embedded
GPU under the heat sink (Figure 2(b)). It has 256 CUDA cores with
4 GB memory. It can perform 512 GFLOPS FP32 operations. To

IPSN ’18, April 11–13, 2018, Porto, Portugal Mithun et al.

(a) (b)

Figure 2: (a) Kinect for XBOX One. (b) Nvidia Jetson TX1 De-
velopment Kit.

compare with a more powerful GPU, NVidia K40 has 2880 CUDA
cores with 12 GB memory that can perform 4291-5040 GFLOPS
FP32 operations.

ODDS is implemented in C++. It runs on Ubuntu 16.04 as an
application on Jetson TX1 development kit. It uses libfreenect2
library of the OpenKinect project to get the depth frames from a
Kinect, which in turn uses libusb library to access the USB interface.
It uses Ca�e [24] framework to run our CNNmodel to detect objects.
However, other CNN frameworks, e.g., TensorFlow, Torch could
also be used. Note that it performs the entire processing on board
and publishes only the timestamp and object metadata to a server.
However, authorized users can con�gure ODDS to publish images
to the server for a speci�c type of object, e.g., a gun. Authorized
users can monitor the reported activities using a browser in real-
time. An overview of the ODDS object detection approach is shown
in Figure 3, where for an input depth frame, ODDS performs a
single evaluation of the CNN model and produces bounding box
o�sets for all detected objects, along with the class of each object
and the corresponding con�dence score. Our detection CNN uses
feature map from six selected layers to detect objects of di�erent
scales. These six layers are shown inside the detection CNN in
Figure 3. ODDS uses di�erent modules to perform di�erent tasks
to �nally output the object detection and classi�cation information
in real-time. The ODDS software architecture and the modules
are shown in Figure 4. The raw depth frames are pre-processed to
be ready for input to CNN in Depth Preprocessor module. Object
Detection CNN module uses the trained CNN to both detect and
classify objects from depth frames in real-time. The Detection Post-
processor module is responsible for removing detections with low
con�dence and merging multiple detections that belong to the same
object. The Update Reporter module reports the detection output
to a server. In the next section, we describe how we build the CNN
model that is lightweight enough to be able to run on this embedded
platform and also accurate.

4 METHODOLOGY
We perform an empirical study of directly using existing pre-trained
CNN models that are trained using RGB images to see how they
perform on our data. We �nd that the performance is extremely
poor (accuracy less than 1%) and they are hardly able to classify or
detect any object. We believe this is because of signi�cant di�erence
in RGB and raw noisy depth images. Moreover, no object detection
dataset of depth images is available for our setting, where the sensor

is mounted at the ceiling looking downwards. Hence, we collect
data and build our own dataset [4]. Inspired by the success of CNN
based single shot object detectors, we construct an object detection
CNN and train it utilizing our dataset. Our depth dataset has limited
variety and data imbalance between classes. To help the network
reach its potential in spite of these constraints, we develop a training
strategy which helps the model to achieve better performance. To
help the network achieve higher accuracy, we design a �xed path
curriculum learning strategy based on the complexity of training
images and use that to guide the training process. Inspired by the
success of sparse coding in representative subset selection and
regularizing deep networks [16, 35, 58], we propose a sparse coding
based approach to improve the speed of detection process, which
works on retaining most representative �lers and prune redundant
ones. We also perform extensive data augmentation, which is a
common and good practice in deep network training with limited
data.

In this section, we �rst present our depth dataset construction
and annotation process (Section 4.1). Then, we present our deep
CNN based approach for single-shot object detection (Section 4.2),
followed by our proposed training process (Section 4.3). The cur-
riculum learning based strategy to train our object detection CNN is
described in Section 4.3.2. Then we describe how we use sparse cod-
ing based representative selection to improve the speed of detection
process in Section 4.3.3.

4.1 Smart Building Depth Dataset Construction
As discussed in Section 1 and 2, the best solutions for object de-
tection are based on deep CNN models that require millions of
RGB images to train [29, 50]. To the best of our knowledge, there is
no depth dataset for our proposed mounting position. Acquisition
of such a depth dataset is more challenging than that of an RGB
dataset. Because, RGB images can be crawled from the internet us-
ing crowd-workers, whereas we need a specialized set up to collect
depth data. Also, we need annotation for bounding boxes of each
object, which is labor-intensive. In this section, we describe how
we collect our depth dataset and how we annotate depth frames
in an e�cient way using multiple instance learning (MIL) based
tracking algorithm.

Data Collection: We collected data from two settings. We had
a Kinect mounted at a 9.3 feet ceiling near to a 6 feet wide door. We
also used a tripod with a horizontal extender holding the Kinect at a
similar height looking downwards. We asked 20 volunteers to enter
and exit 9 times each in di�erent directions (3 times walking straight
through the center, 3 times walking towards the left side, 3 times
walking towards the right side) holding objects in many di�erent
ways and poses underneath the Kinect. Each subject was using
his/her own backpack, purse, laptop, etc. As a result, we considered
varieties within the same object, e.g., for laptops, we considered
Macbooks, HP laptops, Lenovo laptops of di�erent years andmodels,
and for backpacks, we considered backpacks, side bags, and purse
of women. We asked the subjects to walk while holding it in many
ways, e.g., for laptop, the laptop was fully open, partially closed,
and fully closed while carried. Also, people hold laptops in front
and side of their bodies, and underneath their elbow. The subjects
carried their backpacks in their back, in their side at di�erent levels

ODDS: Real-Time Object Detection using Depth Sensors on Embedded GPUs IPSN ’18, April 11–13, 2018, Porto, Portugal

CONV7

In
iti

al
 D

et
ec

tio
ns

Feature Pyramid

Trained and Pruned Detection CNN
CONV4_3

N
on

-M
ax

im
um

Su
pp

re
ss

io
n

CONV9_2
CONV10_2

CONV8_2

CONV11_2

Input Depth frame
Output Detection

Figure 3: An overview of how ODDS works

!"#$%#&'()*+

,-"#."

,-"/011$12%3

!"#$%&

'("#()*"++)(

!"$"*$,)-&

')+$.#()*"++)(

!""#

4"512%&61%12%-7$&899

/#01$"&2"#)($"(

!"$"*$&345"*$+ 671++,89&345"*$+

!""#$%"&'()(*$%)+'&',$-.&//"01"(23'4536078

Figure 4: ODDS Software Architecture

from foot to shoulder. We wanted to collect data with real guns.
However, bringing real guns to the o�ce is prohibited. So, we
obtained a few nerf guns and the subjects were carrying these guns
pointing it to front, side, up, and down while walking. Figure 5
shows a few samples of our collected data containing objects from
backpack class (row 1, 2) and laptop class (row 3, 4). It is really
hard to see these objects from the depth frames. So, we also show
the corresponding RGB images in Figure 5. The frame rate for data
collection was around 15 FPS.

Annotation using MIL tracking with human in the loop:
Our data labeling system hinges on online multiple instance learn-
ing (MIL) based tracking [8] with human (annotator) in the loop.
The MIL algorithm trains a classi�er in an online manner to sepa-
rate the object from the background. MIL is one of the most stable
trackers and is capable of handling ambiguously labeled samples
that are provided to the tracker itself. The MIL based approach
extracts a bag of potentially positive image patches and has the
�exibility to pick out the best one. Additionally, the algorithm is
simple to implement and can run at real-time.

For all sequences, the annotator will start the process by draw-
ing the bounding box of the object in the �rst frame. Then, the
tracker starts tracking the object frame by frame (while the subject
is entering/exiting through the door) and the bounding box coor-
dinates are stored. When the annotator feels that the tracker has
drifted signi�cantly from actual track, he stops the tracker, draws
the bounding box around the object for that frame and starts the
tracking again. This process continues till the end of the sequence
(the subject entered/exited). Using MIL in labeling decreases the

tracking time signi�cantly but it may introduce slight noise in the
annotation. We believe that small noise in annotation ultimately
will help our CNN model to generalize better. The dataset statistics
are shown in Table 1. There was a person in 65084 frames. There
was a backpack, laptop, gun in 21948, 20693, and 19379 frames,
respectively. Only 558, 670, 777, and 1059 frames contain a phone,
an umbrella, a cup, and a box, respectively. It is obvious that our
dataset is highly imbalanced.

4.2 Object Detection Network
Our network structure is inspired by SSD object detection network
[32]. We evaluate popular state-of-the art object detectors on our
task, e.g. Faster RCNN [43], YOLO [42], and SSD [32] by training
on our dataset and empirically select SSD for better performance
in terms of speed and accuracy. Faster RCNN and SSD both achieve
good accuracy, but Faster RCNN is computationally more expensive.
YOLO is computationally fast, but the accuracy is relatively low.

Network Overview: The object detection network is built on
top of a base pre-trained CNN (e.g. atrous VGG-16 [13] in our case).
Series of progressively smaller convolutional layers are added to the
base network that have feature maps of progressively decreasing
spatial resolution. Di�erent layers within a CNN are used to predict
objects of di�erent scales. We use 6 feature maps (see Figure 3) with
di�erent scales (e.g. 16 x 16, 8 x 8, 4 x 4 etc), each responsible for
a di�erent scale of objects, allowing it to identify objects across a
large range of scales. Feature map with highest spatial resolution is
responsible for detecting smallest objects and vice versa. A small

set of default boxes of di�erent aspect ratio (e.g., 1, 2, 3,
1
2
,
1
3
) is

evaluated using a 3x3 convolutional �lter at each location in each
of these feature maps. At each location, 4 shape o�sets and the
con�dences for all object categories are simultaneously predicted
for each default box. Hence, for each input depth image, the net-
work ultimately produces a constant number of bounding boxes
and classi�cation scores of all categories for each box. Combining
predictions from all locations of feature maps for the default boxes
with several scales and aspect ratios allows the model to predict
objects of di�erent sizes and shapes with high accuracy. Finally,
these detections are post-processed by non-maximum suppression
to produce the �nal detection results. Non-maximum suppression
groups together overlapping boxes and only the box with highest
con�dence score is kept from each group. For more details on the
network architecture, we refer the interested readers to [32].

IPSN ’18, April 11–13, 2018, Porto, Portugal Mithun et al.

RG
B

De

pt
h

RG

B

De
pt

h

Figure 5: A few samples of collected images of ‘Backpack’ and ‘Laptop’ classes from our dataset.

Class Name Person Backpack Box Cup Gun Laptop Phone Umbrella

Total No. of Images 65084 21948 1059 777 19379 20693 558 670

Table 1: Number of depth frames per class in our dataset.

The training objective is to minimize a weighted sum of local-
ization loss and classi�cation con�dence loss. The objective loss
function is:

Loss(x , c, l ,�) = 1
N
(Lconf (x , c) + Lloc (x , l ,�)) (1)

Here, N is the total number of default boxes matched to a ground
truth box, x denotes training data, c denotes con�dences of multiple
classes, l denotes predicted box parameters, and � denotes the
ground truth box parameters.

The localization loss is a smooth L1 regression loss between the
predicted bounding box parameters and the ground truth bounding
box parameters. The class con�dence loss is softmax loss over
con�dence of multiple classes. To compute the loss, SSD matches
objects with default boxes of di�erent aspects with ground truth
boxes based on intersection over union (IoU). For each ground truth
box, it is matched with the default boxes having Jaccard overlap
higher than a threshold (e.g. 0.5). This allows one ground truth box
to be matched to multiple default boxes rather than selecting only
one default box with the highest overlap [32].

4.3 Training ODDS for Object Detection
In the previous section, we have presented a supervised object de-
tection approach for detecting bounding boxes and object classes
from an image. However, to achieve optimal performance, a few
practical concerns have to be taken care of, e.g., the imbalanced
number of images in di�erent classes, the complexity of training

examples in di�erent classes and the limited number of training
examples in the dataset. To handle the issue of imbalance in object
classes and complexity, we introduce a specialized curriculum based
training strategy that follows the natural complexity and imbal-
ance found in our dataset. In addition, we perform extensive data
augmentation in training for this purpose. In order to speed up, we
develop a sparse coding based model pruning method for our object
detection module. There are mainly two ways to reduce the detec-
tion time of an object detection module. First, we can start with a
smaller/lighter pre-trained CNN network (e.g., AlexNet [29], ZFNet
[56], ThiNet [34]) as the base network, instead of using VGG-16
[46]. Second, we can train the object detection network with a large
pre-trained network, which is capable of learning complex models
suitable for achieving high accuracy for our case and then design
a deep CNN reduction method to accelerate the detection process.
We focus on the second approach as it provides a more accurate
model. We initially train the object detection network as described
in Sec. 4.3.2 and prune this trained model with our proposed mixed
l2,1 norm based sparse representation approach, as described in
Sec. 4.3.3.

4.3.1 Preprocessing. The resolution of a depth frame from a
Kinect for XBOX One is 512x424. Each pixel of the depth frame
provides the distance from the Kinect to the nearest object in mil-
limeters. The maximum range of Kinect for Xbox One is 8 meters,
which means that each depth pixel value can be represented by a

ODDS: Real-Time Object Detection using Depth Sensors on Embedded GPUs IPSN ’18, April 11–13, 2018, Porto, Portugal

13 bit unsigned integer (213 > 8000). We divide each depth pixel
value by 32 (i.e., 25), which converts each depth pixel value to an 8
bit integer. There are two advantages of this divide:

(1) It helps us discarding minor noise in the depth estimation,
which helps in training the model.

(2) The transformed frame can be treated as a single channel
RGB frame. We replicate the same frame 3 times over 3
channels to form an RGB image using pure depth data. Con-
verting it to an RGB frame enables us to reuse weights from
pre-trained models for transfer learning.

Even though we replicate the same depth channel thrice to make
fake RGB frames, this replication has a minimal impact on the
computation time and memory footprint of a su�ciently deep CNN
like ours. For the ODDS (no pruning) network shown in Table 2
(22.935 million number of parameters and 96.43 MB model size), if
a one channel depth image is used as input to a similar CNN model,
the number of parameters decreases by only 1152 and themodel size
decreases approximately by 4.5 KB. Hence, these redundant three
channels are increasing the model size by only 0.0046%. A good
initialization is crucial for a deep CNN to converge and converting
depth frames to fake RGB frames enables us to utilize weights
from pre-trained RGB models. The reason for reusing weights from
existing pre-trained RGB models is because RGB images based
object detection literature is much more richer than the depth
sensing based counterpart.

We also use several data augmentation techniques to reduce
the over-�tting problem because of limited data and to make our
model more robust to di�erent noise, sizes and, shapes. Following
[22, 32], we randomly sample several patches from images and apply
di�erent a�ne transformations and photo-metric transformations
on the images. For more details on data augmentation, we refer the
interested readers to [22, 32].

The resolution of the input image to the network is a design
choice. Using a very high resolution image as an input is expected
to provide a better accuracy, but the processing time may be signif-
icantly higher. On the other hand, a lower resolution image may
have a higher speed, but the accuracy may su�er. We empirically
choose 300x300 resolution as the input image size of our network.
Hence, we re-size the 512x424 depth images to 300x300 before using
them as input to our network.

4.3.2 Curriculum Learning . In deep neural networks, the model
parameters are learned in an iterative fashion using stochastic
gradient descent and its variations. As the objective function in
deep networks has a highly non-convex shape, the order of sample
presentation for such networks is important. It has been shown
that appropriate curriculum strategies guide the learner towards
better local minima [11]. Curriculum learning allows the model to
learn simpler instances (e.g., cleaner examples, simpler shapes) �rst
so they can be used as building blocks to learn more complex ones,
which leads to a better performance in the �nal task.

In our work, we propose to extend the concept of curriculum
learning for object detection. Utilizing the prior knowledge of easy
and hard examples in our dataset, we design a curriculum learn-
ing strategy for our task, which improves the model performance
signi�cantly. We �nd that person class is the most complex one
in our training set. The person class has more varied shapes than

other classes and there is a high chance of having noisy bounding
box annotation in the person class because of overlap with other
classes. Moreover, the person class has signi�cantly more images
than other classes, as we are interested in the objects carried by
humans in the o�ce and all of our training images have at least
one person in it.

Based on this, we design a �xed path curriculum for our task. In
the training procedure, the complexity of the training data should
be increased while the simpler image samples should not be dis-
carded. We �rst perform training on a subset (D1), which contains
all the classes except the person class, until convergence. Then, the
hard subset (D2), i.e., person class is merged into the dataset. The
best model weightsW ⇤ from the previous training step are adopted
as the initialization for next training iteration. Then, the training is
performed again with a lower basic learning rate to reduce the in�u-
ence of di�cult samples. CNN with curriculum learning algorithm
is shown in Algorithm 1.

Algorithm 1 Training CNN with Curriculum Learning

1: Input: Input Dataset D = {D1,D2}, where, D1 contains all
samples without Person class and D2 contains only samples of
Person class.

2: i=1
3: Dtrain = �
4: Initialize network parametersW using a pre-trained CNN and

Xavier algorithm
5: while (i<=2) do
6: Dtrain = Dtrain [Di
7: while (not converged) do
8: Perform training, train(Dtrain ,W)
9: end while
10: Select bestW ⇤;
11: Update learning Rate;
12: i = i + 1
13: end while
14: Output: Optimal Model ParameterW ⇤

4.3.3 Model Pruning. After our model is trained, we perform
sparse coding based channel pruning and �ne-tuning (retraining
using Algorithm 1) so that ODDS can run on a low cost embedded
platform in real-time. The goal of model pruning is to �nd a smaller
representative �lter set from the �lters of a layer. In particular,
we are trying to represent the �lters of a layer by selecting only
a few representative �lters. Our representative �lter selection is
based on sparse representative selection approach [14, 16]. The
basic idea behind this is to utilize the self-expressiveness property,
which states that each point in the set can be described as a linear
combination of a few of the selected representative points.

Let, X 2 RB⇥N be the matrix representing all the �lters in a
layer, where X = {xi 2 RB , i = 1, · · · ,N }. Each xi represents
the components of a �attened �lter in the current layer, which is
B-dimensional. N denotes the number of �lters in the layer. For
example, in VGG-16, conv1_1 layer has 64 �lters of dimension
3x3x3. We �atten the �lter to make it 1-dimensional for easier
calculation. After �attening, the size of �lter matrix of conv1_1 is

IPSN ’18, April 11–13, 2018, Porto, Portugal Mithun et al.

27x64. Now, the natural goal is to establish a �lter level sparsity
which can be induced by performing l1 regularization on rows of
the selection matrix Z 2 RN⇥N . By introducing the row sparsity
regularizer, the problem can now be succinctly formulated as

min | |X � XZ | |2F s.t. | |Z | |2,0  � , (2)
where, kZ k2,0 gives the number of nonzero rows of the matrix Z . �
is a tradeo� parameter. Solving Eq (2) is an NP-hard problem since
it requires searching over every subset of the � columns of X. A
standard relaxation to the constraint 2 is given by

min | |X � XZ | |2F s.t. | |Z | |2,1  � , (3)
where, Z 2 RN⇥N is the sparse coe�cient matrix and kZ k2,1 ,ÕN
i=1kzi k2 is the row sparsity regularizer, i.e., sum of l2 norms of

the rows of Z .
Minimization of Eq. 3 leads to a sparse solution for Z in terms

of rows, i.e., the sparse coe�cient matrix Z contains a few nonzero
rows that constitute the representative set. Optimization of Eq. 3
attempts to obtain a sparse set of representative �lters.

Optimization:Here, we brie�y describe the strategy to solve the
convex optimization problem in Eq. 3. We solve the optimization
using an Alternating Direction Method of Multipliers (ADMM)
framework [12]. Using Lagrange multipliers, optimization problem
in Eq. 3 can be written as

min
1
2
kX � XZ k2F + �kZ k2,1 (4)

where � is trade-o� parameters associated with sparsity and diver-
sity regularization. Using ADMMwith an auxiliary variableA, Eq. 4
can be equivalently expressed as

min
1
2
kX � XAk2F + �kZ k2,1 s .t . A = Z , (5)

Now, we can form the augmented Lagrangian L� (A,Z ,�) with
both linear and quadratic terms as following,

L� (A, Z , �) =
1
2
kX � XA k2F + � kZ k2,1 + �T (A � Z) + �

2
kA � Z k2F

(6)
The above Lagrangian is a function of two primal(Z ,A) and one
dual(�) variable. Thus, ADMM consists of minimization of Eq. 6
alternatively with respect to these three variables.

After performing the derivatives with respect to each variable
and equating to zero, we �nd the ADMM consists of following
iterations,

A(t+1) := (XTX + �I)�1(XTX + �(Z (t) � �(t)/�))
Z (t+1) := S�/� (A(t+1) + �(t)/�)

�(t+1) := �(t) + �(A(t+1) � Z (t+1))
(7)

In Eq. 7, the minimization respect to l2,1 norm is de�ned as,

Sµ (z) = max
n
| |z | |2 � µ, 0

o z

kzk2
. (8)

We choose columns of X corresponding to the nonzero rows of
�nal Z as the representative �lter and denote the matrix of the rep-
resentative �lters as Y . Here, Y 2 RB⇥K is the feature matrix for all
selected representative �lters, where Y = {�i 2 RB , i = 1, · · · ,K}.
�i represents the components of ith representative �lter which is
B-dimensional. K denotes the number of �lters in representative

set. After pruning is done, we �ne-tune the pruned model to regain
the performance.

4.3.4 Model Training Details. Our network architecture consists
of a pre-trained convolutional neural network followed by smaller
convolutional layers. We use ReLU nonlinear activations through-
out the network. The convolutional network module follows the
VGG-16 architecture [46]. We trained the CNN using stochastic gra-
dient descent. We start the �rst step of training with 0.0005 learning
rate and decrease it when the training loss reaches a plateau. For
the second step of training, we start with a learning rate of 0.00025.
We use 0.9 momentum, 0.0005 weight decay, and mini-batch size 32.
The new layer weights are initialized using the Xavier algorithm
[18]. The entire network is �ne-tuned end-to-end for the task. We
follow an 80% / 20% split for training image set vs. testing set. We
prepare our depth dataset structure similar to the pascal-VOC for-
mat [17], which helps in handling learning procedure easily with
di�erent existing object detection networks.

5 EVALUATION
In this Section, we evaluate the performance of ODDS for precision
and speed. We randomly split the dataset for training (80%) and
testing (20%) and evaluate performance on the testing set. Note
that this 20% split is done per class. Hence, for classes with small
samples, e.g., a cup or a phone, we still have 20% images of that
class in the test set.

We train several di�erent models to �nd an optimal network in
terms of accuracy and speed. The networks vary based on 3 factors:
(1) base pre-trained CNN used (ZFNet, ThiNet, or VGG16), (2) use
of training strategy (curriculum learning is used or not), and (3)
use of pruning step (sparse coding based �lter selection is used or
not). We try two di�erent pruning network, i.e., low pruning and
high pruning. The detailed statistics of the number of �lters and
parameters in the ODDS with no pruning, ODDS with low pruning,
and ODDS with high pruning model is shown in Table 2 for VGG16
based models. We only show the convolutional layers, where the
number of �lters are pruned and the number of parameters are
decreased.

The mAP (mean Average Precision) of di�erent methods is
shown in Table 3. The base network and technique used for training
can be identi�ed based on the name of the network. For example,
ODDS-VGG16 is trained using the atrous VGG16 [13] as the base
network and a single training step. Pruning step and curriculum
based training strategy is not used. On the other hand, ODDS-
VGG16+CurrLearning+Pruning (Low) is trained using VGG16 as
the base network and proposed two step curriculum based training
(Sec. 4.3.2) and the sparse coding based low pruning step is also
used. We also show performance when high pruning is applied.
We use the mAP criterion followed in the PASCAL VOC object
detection challenge [17], which is a standard metric for evaluating
the performance of object detectors.

Table 3 shows that curriculum based training guides ODDS to
achieve better accuracy. ODDS with curriculum based training
achieves the highest mAP of 84.94%. The performance increases
signi�cantly for small objects with curriculum based training (e.g.,
68.42% from 35.89% for phones, 71.57% from 63.32% for cups), com-
pared to training without it, whereas for large objects the mAP

ODDS: Real-Time Object Detection using Depth Sensors on Embedded GPUs IPSN ’18, April 11–13, 2018, Porto, Portugal

Network

Layers

ODDS (No Pruning) ODDS (Low Pruning) ODDS (High Pruning)

No. of
Filters No. of Weights No. of

Filters No. of Weights No. of
Filters No. of Weights

Conv1_1 (3X3) 64 (3*3*3)*64 = 1,728 32 (3*3*3)*32= 864 16 (3*3*3)*16 = 432
Conv1_2 (3x3) 64 (3*3*64)*64 = 36,864 32 (3*3*32)*32 = 9,216 16 (3*3*16)*16 = 2,304
Conv2_1 (3x3) 128 (3*3*64)*128 = 73,728 64 (3*3*32)*64 = 18,432 32 (3*3*16)*32 = 4,608
Conv2_2 (3x3) 128 (3*3*128)*128 = 147,456 64 (3*3*64)*64 = 36,864 32 (3*3*32)*32 = 9,216
Conv3_1 (3x3) 256 (3*3*128)*256 = 294,912 128 (3*3*64)*128= 73,728 64 (3*3*32)*64 = 18,432
Conv3_2 (3x3) 256 (3*3*256)*256 = 589,824 128 (3*3*128)*128 = 147,456 64 (3*3*64)*64 = 36,864
Conv3_3 (3x3) 256 (3*3*256)*256 = 589,824 128 (3*3*128)*128 = 147,456 64 (3*3*64)*64 = 36,864
Conv4_1 (3x3) 512 (3*3*256)*512 = 1,179,648 256 (3*3*128)*256 = 294,912 128 (3*3*64)*128 = 73,728
Conv4_2 (3x3) 512 (3*3*512)*512 = 2,359,296 256 (3*3*256)*256 = 589,824 128 (3*3*128)*128 = 147,456
Conv4_3 (3x3) 512 (3*3*512)*512 = 2,359,296 512 (3*3*256)*512 = 1,179,648 512 (3*3*128)*512 = 589,824
Conv5_1 (3x3) 512 (3*3*512)*512 = 2,359,296 512 (3*3*512)*512 = 2,359,296 128 (3*3*512)*128 = 589,824
Conv5_2 (3x3) 512 (3*3*512)*512 = 2,359,296 512 (3*3*512)*512 = 2,359,296 128 (3*3*128)*128 = 147,456
Conv5_3 (3x3) 512 (3*3*512)*512 = 2,359,296 512 (3*3*512)*512 = 2,359,296 128 (3*3*128)*128 = 147,456
fConv6 (3x3) 1024 (3*3*512)*1024 = 4,718,592 1024 (3*3*512)*1024 = 4,718,592 512 (3*3*128)*512 = 589,824
fConv7 (1X1) 1024 (1*1*1024)*1024 = 1,048,576 1024 (1*1*1024)*1024 = 1,048,576 1024 (1*1*512)*1024 = 524,288
Conv6_1 (1x1) 256 (1*1*1024)*256 = 262,144 256 (1*1*1024)*256 = 262,144 128 (1*1*1024)*128 = 131,072
Conv6_2 (3x3) 512 (3*3*256)*512 = 1,179,648 512 (3*3*256)*512 = 1,179,648 512 (3*3*256)*512 = 1,179,648
Conv7_1 (1x1) 128 (1*1*512)*128 = 65,536 128 (1*1*512)*128 = 65,536 64 (1*1*512)*64 = 65,536
Conv7_2 (3x3) 256 (3*3*128)*256 = 294,912 256 (3*3*128)*256 = 294,912 256 (3*3*64)*256 = 147,456
Conv8_1 (1x1) 128 (1*1*256)*128 = 32,768 128 (1*1*256)*128 = 32,768 64 (1*1*256)*64 = 16,384
Conv8_2 (3x3) 256 (3*3*128)*256 = 294,912 256 (3*3*128)*256 = 294,912 256 (3*3*64)*256 = 147,456
Conv9_1 (1x1) 128 (1*1*256)*128 = 32,768 128 (1*1*256)*128 = 32,768 64 (1*1*256)*64 = 16,384
Conv9_2 (3x3) 256 (3*3*128)*256 = 294,912 256 (3*3*128)*256 = 294,912 256 (3*3*64)*256 = 147,456

Total
Parameters - 22,935,232 = 22.935 Million - 17,801,056 = 17.801 Million - 4,769,968 = 4.769 Million

Model Size 96.43 MB 76.36 MB 23.02 MB

Table 2: Number of parameters in di�erent layers of ODDS-VGG16 network with and without pruning

Methods mAP Laptop Backpack Umbrella Phone Box Cup Gun Person

ODDS-ZFNet 55.49 76.77 83.53 30.56 0.65 87.88 20.21 60.72 82.25

ODDS-ThiNet 49.88 82.52 86.33 17.08 1.13 48.95 15.93 84.63 63.35

ODDS-VGG16 78.94 91.5 94.53 77.37 35.89 90.05 63.32 90.49 89.34

ODDS-VGG16+CurrLearning 84.94 90.59 90.83 90.66 68.42 80.86 71.57 95.96 90.68

ODDS-VGG16+ Pruning (Low) 75.43 90.08 90.76 84.17 18.12 88.12 54.24 90.79 87.12

ODDS-VGG16 + Pruning (High) 51.59 78.79 85.44 13.83 3.15 43.04 19.11 80.25 89.15

ODDS-VGG16 + CurrLearning + Pruning (Low) 80.14 90.52 90.84 82.31 46.67 83.68 66.50 90.89 89.78

ODDS-VGG16 + CurrLearning + Pruning (High) 71.35 85.53 90.20 78.28 21.12 72.40 46.26 88.85 88.18

Table 3: Object detection results in mAP. The best score is indicated as bold and the second best score is underlined

remains almost the same. It is also worth indicating that when using
a smaller base network initially, the mAP is low, e.g., 49.88% for
ODDS-ThiNet. ThiNet is a reduced VGG model for better speed.
However, our pruned model, which we set to achieve same network
structure of ThiNet achieves signi�cantly higher mAP with higher
frames per second. After applying pruning, the mAP reduces to
80.14%, which is close to the highest mAP. However, it speeds up

⇠2x as described later. If we keep pruning the network, the perfor-
mance drops signi�cantly as we see the mAP drops to 71.35% after
applying high pruning.

The computation time of complete object detection process is
shown in Table 4 for the �ve best performing models of Table 3.
We run ODDS on two powerful GPUs: GTX 1080 Ti and K40, and
on two embedded GPUs: Jetson TX1 and TK1. We see that FPS gets
almost doubled after applying low pruning across all GPUs (69.33

IPSN ’18, April 11–13, 2018, Porto, Portugal Mithun et al.

Method mAP Model Size
(MB)

Frame Per Seconds in GPUs
GTX 1080 Ti K40 Jetson TX1 Jetson TK1

ODDS-VGG16 78.94 96.43 41.5 14.85 3.25 1.32

ODDS-VGG16+ CurrLearning 84.94 96.43 41.5 14.85 3.25 1.32
ODDS-VGG16+ Pruning (Low) 75.43 76.36 69.33 26.1 5.94 2.47
ODDS-VGG16 + CurrLearning + Pruning (Low) 80.14 76.36 69.33 26.1 5.94 2.47
ODDS-VGG16 + CurrLearning + Pruning (High) 71.35 23.02 104 42.6 11.93 3.79

Table 4: Speed, Accuracy, Model-Size trade-o� chart for the 5 best performing models of Table 3

from 41.5 in GTX 1080 Ti, 26.1 from 14.85 in K40, 5.94 from 3.25
in TX1, 2.47 from 1.32 in TK1), which means a 1.75-2x speed-up
in execution time by keeping the mAP close. This is because the
pruned model has 79% parameters (76.36 MB vs. 96.43 MB). After
applying high pruning, we get a 2.5-4x speed up from the origi-
nal ODDS-VGG16+CurrLearning model. This is because the high
pruning model has only 23% parameters (23.02 MB vs 96.43 MB).
However, the mAP drops to 71.35%. Note that 3 FPS is reasonable
enough to track people for such a setting as shown in [37]. Hence,
Jetson TX1 can be used with ODDS-VGG16+CurrLearning+Pruning
(Low) model that can detect objects with 80.14% mAP at 5.94 FPS.
If the application requires a cheaper solution where lower accuracy
is permitted, ODDS-VGG16+CurrLearning+Pruning (High) model
can be used on a Jetson TK1 with 71.35% mAP at 3.79 FPS. We could
not perform a real-time evaluation of ODDS as the speed of ODDS
starts to degrade signi�cantly if we start saving depth frames to
a disk due to I/O. However, for that evaluation, we need to save
depth frames to compare the bounding boxes of the detected objects
with that of ground truth. By default, ODDS does not store any
depth frames for privacy concerns. However, Table 4 provides an
insight regarding the real-time performance of ODDS as it shows
the number of frames processed per second by ODDS.

Figure 6 shows a few frames demonstrating objects and associ-
ated bounding boxes detected by ODDS. Note that ODDS can detect
multiple people and objects in a frame, even though none of the
training samples had multiple objects in it. Initially, we experienced
an issue with detecting multiple humans. ODDS was detecting mul-
tiple objects, e.g., multiple backpacks, multiple laptops, multiple
backpacks and laptops in a frame. But, it was not detecting multiple
people in a frame. By going through the training set, we realized
that there were ⇠400 frames where there were multiple people,
but only one human was annotated. As a result, ODDS assumed
the rest as background. Removing these frames and retraining of
ODDS enabled the detection of multiple people simultaneously.
Also, the solution generalizes to other doors. We run ODDS in two
di�erent doors, where no data have been collected during dataset
construction and it seems to perform accurately (see Figure 6).

6 DISCUSSIONS
Many cyber-physical systems use various types of sensors for de-
tecting an event of interest, e.g., using body-worn sensors for ac-
tivity recognition or Wi� imaging for detecting objects/locations.
Usually, the event detection is performed using signal processing
techniques. An object detector can be a powerful solution for such
problems. Because, these sensor data can be converted to an image,

where X-axis will contain time and Y-axis will contain multiple
sensing modalities. Given enough training data for each event of
interest, an object detector like our proposed solution will deter-
mine the corresponding pattern (object) of each event of interest.
As an example, using this technique, we might detect the start time
and end time of eating activity using body-worn sensors, as an
object detector will be able to locate the exact location of these
two objects in an image (containing temporal data). The challenges
will be how to decide the resolution of the image, how to collect
clean data and accurately annotate these so that background data
(non-eating activities) are di�erent than events of interest (eating
activities).

ODDS takes several measures to address privacy concerns of
the occupants. First, it performs the entire processing onboard and
it does not store or upload images. Second, the depth sensor is
mounted at the ceiling looking downwards. So, ODDS does not see
the face of the subject unless s/he looks at the ceiling. Third, it uses
a depth sensor instead of using an RGB camera, which is a lot less
privacy invasive than an RGB camera for the following reasons:
(a) A depth sensor does not reveal the color of the clothes, skin,
and hair. It is very hard to determine clothing level by looking at
a depth frame. (b) RGB (even grayscale) cameras expose privacy
risks if they are compromised when connected to the Internet, e.g.,
if a whiteboard is in the �eld of view of the camera, some invention
ideas or a prototype product (with labels) from an o�ce could be
revealed outside. ODDS is not as privacy-invasive even if compro-
mised as the sensor will report a �at surface for the whiteboard.
(c) As our depth sensor only sees the body shape and many people
have similar body shape, it cannot identify someone where many
people arrive, e.g., in a shopping center or in an academic building.
It is debatable whether using a depth sensor makes more sense
than using an RGB camera for security applications. If there is an
intruder with a gun, it may be helpful to capture an RGB image
and spread it to the people of interest. Someone can argue that
it is allowed to carry guns in some places and hence it is privacy
invasive of the gun bearer to take photos of him and spread it
around. However, regardless of the law of the land, if we can notify
people that one of them is carrying a gun, that could help them in
taking precautionary steps. While an RGB camera can help identi-
fying the carrier, it can give false positives if someone is wearing
a T-shirt with a photo of a gun. Even though it makes sense to
have RGB cameras at the main entrances of a building, deploying
RGB cameras throughout a building can be perceived to be very
privacy invasive, especially now-a-days when security breaches
are commonplace. Also, it is hard to convince occupants to deploy

ODDS: Real-Time Object Detection using Depth Sensors on Embedded GPUs IPSN ’18, April 11–13, 2018, Porto, Portugal

RGB Depth Detection Output RGB Depth Detection Output

Figure 6: Example of randomly selected 6 depth frames and corresponding detection output. The paired RGB frames with
depth noise are shown to the left to give a better understanding of the object in the image and noise in raw depth frames. Note
that no data have been collected from these two doors during dataset construction.

RGB cameras in their o�ces for improving energy e�ciency or
for a threat detection application. A depth sensor can help in these
cases.

There are also several advantages of using only depth data in-
stead of using an RGBD sensor. First, it is less privacy invasive than
an RGB camera as mentioned above. Second, it is less expensive
than an RGBD sensor as it does not need the corresponding RGB
sensor. Third, it requires less computation at the inference phase
while running CNNs as it does not use the 3 channels of RGB cam-
eras. Also, it saves a lot of computation at the driver level as the
resolution and frame rate of an RGB camera is usually di�erent
than that of the depth sensor and hence a fair amount of mapping,
translation, and synchronization happens between frames (RGB,
D) in the driver that we avoid completely. Note that a depth sensor
does not see the color of an object, which means that our solution
will not be able to classify two boxes of same size but of di�erent
colors. However, as it recognizes the shape of an object, if we train
a backpack, it will detect other backpacks of similar shape, even
with di�erent colors, i.e., the solution would generalize.

Currently, each ODDS unit costs around $314 (when Jetson Tk1
is used) to $624 (when Jetson TX1 is used) as it costs $80 for a
Kinect v2, $44 for a Kinect adapter, $190 for a Jetson TK1, and $500
for a Jetson TX1. However, with a popularity of depth sensors and
embedded GPUs, the price is declining rapidly, e.g., TI OPT8241
depth sensor costs $32 and Intel Movidius Neural Compute Stick
costs $80, which requires a Raspberry Pi 3 that costs $35. The cost of
installation is not more than installing a RGB camera that requires
running a power cable.

ODDS can not detect an object if it is concealed in another
opaque object. RGB camera based solutions also su�er from similar
shortcomings. However, some of our proposed techniques could
be useful in detecting objects if data is collected using a millimeter

wave scanner or a backscatter X-ray machine that is used in secu-
rity checking in airports. The accuracy of ODDS is good, but not
great. However, object detection itself is very challenging and our
performance is close to RGB camera based state of the art solutions
with signi�cantly less computing requirement and cost. We realize
that our model may not work detecting actual guns as we used
nerf guns for training and model construction. However, training
with real guns with the same algorithm will enable us detecting
real guns.

7 CONCLUSIONS
In this paper, we present a novel system called ODDS, which is
the �rst object detector that (i) uses only depth data, (ii) runs on
an embedded GPU, and (iii) performs the entire processing in real-
time. Our solution is much less privacy invasive than using an
RGB camera and signi�cantly cheaper than using a powerful GPU
while maintaining comparable accuracy with the state of the art
solutions. In the future, object detection and tracking could be a
useful primitive in many smart building applications to enhance
safety, security, productivity of the occupants and to improve the
energy e�ciency of the building. ODDS takes an important step
towards realizing that vision.

8 ACKNOWLEDGEMENT
We thank Amit K. Roy-Chowdhury for many helpful comments. We
would also like to thank the anonymous reviewers for the insightful
suggestions. This work was supported, in part, by DOE grant DE-
EE0007682. The opinions expressed here are those of the authors
and do not necessarily re�ect the views of the DOE.

IPSN ’18, April 11–13, 2018, Porto, Portugal Mithun et al.

REFERENCES
[1] 2017. Microsoft Kinect for XBOX One, https://www.xbox.com/en-US/xbox-

one/accessories/kinect. (2017).
[2] 2017. NVidia Jetson TX1 dev kit, https://developer.nvidia.com/embedded/buy/jetson-

tx1-devkit. (2017).
[3] 2018. Building height. https://en.wikipedia.org/wiki/Storey. (2018).
[4] 2018. ODDS dataset. https://doi.org/10.5281/zenodo.1163770. (2018).
[5] Cesare Alippi, Maurizio Bocca, Giacomo Boracchi, Neal Patwari, and Manuel

Roveri. 2016. RTI Goes Wild: Radio Tomographic Imaging for Outdoor People
Detection and Localization. (2016).

[6] Jose M Alvarez and Mathieu Salzmann. 2016. Learning the number of neurons in
deep networks. In NIPS. 2270–2278.

[7] A. Ashok, C. Xu, T. Vu, M. Gruteser, R. Howard, Y. Zhang, N. Mandayam,W. Yuan,
and K. Dana. 2015. Low-Power Radio-Optical Beacons for In-View Recognition.
In VTC.

[8] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. 2009. Visual tracking
with online multiple instance learning. In CVPR. 983–990.

[9] Dan Banica and Cristian Sminchisescu. 2015. Second-order constrained para-
metric proposals and sequential search-based structured prediction for semantic
segmentation in RGB-D images. In CVPR. 3517–3526.

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust
features. In ECCV. Springer, 404–417.

[11] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In ICML. ACM, 41–48.

[12] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011),
1–122.

[13] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. 2016. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected CRFs. arXiv preprint
arXiv:1606.00915 (2016).

[14] Yang Cong, Junsong Yuan, and Jiebo Luo. 2012. Towards scalable summarization
of consumer videos via sparse dictionary selection. IEEE Trans. on Multimedia
14, 1 (2012), 66–75.

[15] Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human
detection. In CVPR, Vol. 1. IEEE, 886–893.

[16] Ehsan Elhamifar, Guillermo Sapiro, and Rene Vidal. 2012. See all by looking
at a few: Sparse modeling for �nding representative objects. In CVPR. IEEE,
1600–1607.

[17] Mark Everingham, Luc Van Gool, Chris Williams, John Winn, and Andrew Zis-
serman. 2009. The PASCAL Visual Object Classes (VOC) Dataset and Challenge.
(2009).

[18] Xavier Glorot and Yoshua Bengio. 2010. Understanding the di�culty of training
deep feedforward neural networks.. In Aistats, Vol. 9. 249–256.

[19] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. 2015. In-
door scene understanding with RGB-D images: Bottom-up segmentation, object
detection and semantic segmentation. IJCV 112, 2 (2015), 133–149.

[20] Saurabh Gupta, Judy Ho�man, and Jitendra Malik. 2016. Cross modal distillation
for supervision transfer. In CVPR. 2827–2836.

[21] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating
Very Deep Neural Networks. arXiv preprint arXiv:1707.06168 (2017).

[22] Andrew G Howard. 2013. Some improvements on deep convolutional neural
network based image classi�cation. arXiv preprint arXiv:1312.5402 (2013).

[23] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[24] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolutional
architecture for fast feature embedding. In ACM MM. ACM, 675–678.

[25] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and A. G Hauptmann. 2015.
Self-Paced Curriculum Learning.. In AAAI, Vol. 2. 6.

[26] Avinash Kalyanaraman, Dezhi Hong, Elahe Soltanaghaei, and KaminWhitehouse.
2017. Forma Track: Tracking People Based on Body Shape. IMWUT 1, 3, Article
61 (Sept. 2017), 21 pages.

[27] Chitra R. Karanam and Yasamin Mosto�. 2017. 3D Through-wall Imaging with
Unmanned Aerial Vehicles Using Wi�. In IPSN.

[28] Nacer Khalil, Driss Benhaddou, Omprakash Gnawali, and Jaspal Subhlok. 2017.
SonicDoor: Scaling Person Identi�cation with Ultrasonic Sensors by Novel Mod-
eling of Shape, Behavior and Walking Patterns. In BuildSys.

[29] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�-
cation with deep convolutional neural networks. In NIPS. 1097–1105.

[30] Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-wise
brain damage. In CVPR. 2554–2564.

[31] Yann LeCun and Yoshua Bengio. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks 3361,
10 (1995), 1–14.

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. SSD: Single shot multibox detector.
In ECCV. Springer, 21–37.

[33] David G Lowe. 1999. Object recognition from local scale-invariant features. In
ICCV, Vol. 2. IEEE, 1150–1157.

[34] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. ThiNet: A Filter Level Pruning
Method for Deep Neural Network Compression. arXiv preprint arXiv:1707.06342
(2017).

[35] Niluthpol Chowdhury Mithun, Rameswar Panda, and Amit K Roy-Chowdhury.
2016. Generating diverse image datasets with limited labeling. InACMMultimedia
Conference. ACM, 566–570.

[36] Hessam Mohammadmoradi, Sirajum Munir, Omprakash Gnawali, and Charles
Shelton. 2017. Measuring People-Flow Through Doorways using Easy-to-Install
IR Array Sensors. In DCOSS.

[37] Sirajum Munir, Singh Arora Arora, Craig Hesling, Juncheng Li, Jonathan Francis,
Charles Shelton, Christopher Martin, Anthony Rowe, and Mario Berges. 2017.
Real-Time Fine Grained Occupancy Estimation using Depth Sensors on ARM
Embedded Platforms. In RTAS.

[38] Sirajum Munir, Le Tran, Jonathan Francis, Charles Shelton, Ripudaman Singh
Arora, Craig Hesling, Matias Quntana, Anand Krishnan Prakash, Anthony Rowe,
and Mario Berges. 2017. Demo: FORK: Fine grained Occupancy estimatoR using
Kinect on ARM Embedded Platforms. In BuildSys.

[39] Shijia Pan, Ningning Wang, Yuqiu Qian, Irem Velibeyoglu, Hae Young Noh,
and Pei Zhang. 2015. Indoor Person Identi�cation Through Footstep Induced
Structural Vibration. In HotMobile.

[40] S. Papaioannou, A. Markham, and N. Trigoni. 2016. Tracking People in Highly
Dynamic Industrial Environments. (2016).

[41] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. 2015. Cur-
riculum learning of multiple tasks. In CVPR. 5492–5500.

[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only
look once: Uni�ed, real-time object detection. In CVPR. 779–788.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards real-time object detection with region proposal networks. In NIPS. 91–
99.

[44] Kalyan Roy and Joydeep Mukherjee. 2013. Image similarity measure using color
histogram, color coherence vector, and sobel method. IJSR 2, 1 (2013), 538–543.

[45] Ivan Sikirić, Karla Brkić, and Siniša Šegvić. 2013. Classifying tra�c scenes using
the GIST image descriptor. arXiv preprint arXiv:1310.0316 (2013).

[46] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[47] Richard Socher, Brody Huval, Bharath Bath, Christopher D Manning, and An-
drew Y Ng. 2012. Convolutional-recursive deep learning for 3d object classi�ca-
tion. In NIPS. 656–664.

[48] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. 2015. Sun rgb-d: A
rgb-d scene understanding benchmark suite. In CVPR. 567–576.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In CVPR.

[50] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In CVPR. 1–9.

[51] Iwan Ulrich and Illah Nourbakhsh. 2000. Appearance-based place recognition
for topological localization. In ICRA, Vol. 2. IEEE, 1023–1029.

[52] Xiaolong Wang and Abhinav Gupta. 2015. Unsupervised learning of visual
representations using videos. In ICCV. 2794–2802.

[53] Chenren Xu, Bernhard Firner, Robert S. Moore, Yanyong Zhang, Wade Trappe,
Richard Howard, Feixiong Zhang, and Ning An. 2013. SCPL: Indoor Device-free
Multi-subject Counting and Localization Using Radio Signal Strength. In IPSN.

[54] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017.
DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems
with a Compressor-Critic Framework. In SenSys.

[55] Jason Yosinski, Je�Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks?. In NIPS. 3320–3328.

[56] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In ECCV. Springer, 818–833.

[57] Pengyu Zhang, Bodhi Priyantha, Jie Liu, and Matthai Philipose. 2015. Redesigning
the Wearable Camera Pipeline to Detect Key Body Parts at Low Power. Technical
Report.

[58] Hao Zhou, Jose MAlvarez, and Fatih Porikli. 2016. Less is more: Towards compact
cnns. In ECCV. Springer, 662–677.

[59] Hongyuan Zhu, Jean-Baptiste Weibel, and Shijian Lu. 2016. Discriminative multi-
modal feature fusion for rgbd indoor scene recognition. In CVPR. 2969–2976.

