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Abstract—In this paper, we address the problem of utilizing
web images in training robust joint embedding models for the
image-text retrieval task. Prior webly supervised approaches
directly leverage weakly annotated web images in the joint em-
bedding learning framework. The objective of these approaches
would suffer significantly when the ratio of noisy and missing tags
associated with the web images is very high. In this regard, we
propose a CP decomposition based tensor completion framework
to refine the tags of web images by modeling observed ternary
inter-relations between the sets of labeled images, tags, and web
images as a tensor. To effectively deal with the high ratio of
missing entries likely in our case, we incorporate intra-modal
correlation as side information in the proposed framework. Our
tag refinement approach combined with existing web supervised
image-text embedding approaches provide a more principled
way for learning the joint embedding models in the presence
of significant noise from web data and limited clean labeled
data. Experiments on benchmark datasets demonstrate that the
proposed approach helps to achieve a significant performance
gain in image-text retrieval.

I. INTRODUCTION

Cross-modal retrieval between visual data and natural lan-
guage description has gained considerable momentum in re-
cent years due to the the success of deep neural networks
in learning aligned representations across modalities [1], [2],
[3], [4]. The deep network based approaches often suffer
from the requirement of huge amount of labeled cross-modal
samples for training robust models. However, constructing
datasets containing large number of annotated image-text pairs
is extremely labor-intensive and prone to errors. In practical
scenarios, given labeling budget, it is generally feasible to
annotate only a few training images with text. Hence, although
existing image-text retrieval models show promising results on
datasets, they are unlikely to generalize well to uncontrolled
scenarios typical in both social media and sensor networks as
they are reliant on large volumes of training data that closely
mimic what is expected in the test cases.

To deal with the issue of limited training data and inspired
by the availability of streams of images with associated
text in the web, a few methods [5], [6] have explored the
use of web images with fully annotated datasets in training
improved joint image-text embedding models (See Fig. 1 for
a brief illustration of webly supervised image-text embedding
task). Although these approaches [5], [6] show performance
improvement in retrieval task, the improvement is quite limited
considering the utilization of large amount of additional web
data. The raw tags associated with web images are often
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Fig. 1. Brief illustration of webly supervised learning of image-text embed-
ding: the goal is to utilize freely available web images with noisy tags along
with a small dataset of images with manually annotated text in learning.

incomplete and error-prone. Hence, directly utilizing such data
without any refinement (as in the prior works [5], [6]) in
the objective of learning may lead to an increased ambiguity
and degraded performance, when the amount of noisy tags
associated with web images is unexpectedly high compared to
clean relevant tags [5]. The learning approach should be able
to deal with huge amount missing information as encountered
frequently in our setting (i.e., most social media images
may contain a few relevant tags). These challenges make the
problem of learning robust joint embedding models using web
images extremely difficult.

Motivated by above, we explore the research question -
Based on a limited fully annotated set of images with textual
descriptions, is it possible to refine the tags of web image and
utilize them in boosting the performance of joint image-text
embedding models? For example, can we build a reasonable
joint image-text embedding model when we have access
to only 5% of labeled data from image-text datasets (e.g.,
MSCOCO) and the remaining 95% data are weakly annotated?
Although, existing largest image-text datasets cover a limited
number of image-text (e.g., about 500k in MSCOCO and 150K
pairs Flickr30K), it is critical to consider availability of a
significantly smaller number of cross-modal pairs (e.g., 2K
pairs) focusing on specific practical applications, such as cross-
modal retrieval focusing on a sudden emergency scenario. In
such a case, it is extremely crucial to complement scarcer
clean set of pairs with freely available web images to improve
the performance of image-text embedding models. However,



availability of a small clean set makes it extremely difficult to
train a reliable model, considering significantly high amount
of noisy and missing entries typical in web image tagging.

Towards tackling the challenges, our idea is to first refine
the tags of weakly annotated web image collection utilizing
their latent relationships with the small clean set of images.
The two set of image collections can be inter-related easily
based on associated tags, however, we can only have partial
observations of the relationships due to the noisy nature of web
image tags. We propose to utilize the observed incomplete
relationships in a tensor completion framework to predict
the missing tags and remove the noisy ones. The proposed
image tag refinement approach is motivated by the success
of tensor completion approaches in multi-way data analysis
[7], [8], [9]. In this work, we formulate the web image-tag
refinement as a CP decomposition based tensor completion
approach that leverages ternary interactions among dataset
images, tags and web images in refining web image tags.
To efficiently recover missing dynamics, we also incorporate
intra-modal similarity as auxiliary information to regularize
the tensor completion problem. Refined web images are then
used with webly supervised learning frameworks for training
joint image-text embeddings. Experiments demonstrate that
our approach is successful in cleaning tags and improving the
performance of joint embedding models significantly.

Contributions. The main contributions of this work can be
summarized as follows: First, we present an efficient frame-
work for learning of image-text embedding in the presence
of limited clean labeled data and web images containing
significant noise. In the framework, the web images associated
with noisy tags are first refined using the proposed tensor
completion approach and then used with a small clean dataset
in webly supervised learning frameworks for training joint
image-text embedding models. Second, we propose to refine
tags of web images by modeling the inter-relation between
web image collection and clean dataset images (based on
associated tags) as a tensor and utilizing intra-modal similarity
as side information in a CP decomposition based tensor
completion framework. Third, experiments demonstrate that
the proposed approach is promising in refining tags from web
image collection and helps to train improved joint image-text
embedding models with limited clean labeled data.

II. RELATED WORKS

Cross-modal image-text retrieval. Cross-modal image/video
to text retrieval has received intense attention recently [1], [3],
[10], [11], [12]. Learning joint embedding models are very
popular in this task since it is possible to compare representa-
tions from different modalities in such a joint space [3], [13],
[4], [14], [15]. Canonical correlation analysis (CCA) based
approaches is a popular choice in learning joint image-text
embeddings and have also been explored in several prior works
[16], [17], [18].

In recent years, triplet ranking loss based approaches have
been widely used in learning joint visual-semantic embedding

[1], [19], [3], [13], [20], [4], [15] and have achieved state-
of-the-art performance in cross-modal retrieval tasks [3], [20],
[4], [14], [10]. Although these supervised approaches show
strong performance on benchmark datasets, they would suffer
in practical scenarios where it is possible to label only a few
examples with a given labeling budget and time.

Web supervised image-text retrieval. It is extremely difficult
and labour-intensive to create large-scale datasets by manually
annotating images [21], [5]. Moreover, it has been reported
that models trained on dataset images fails to generalize well
across datasets [22], [23], [24]. On the other hand, several
recent works have shown that utilizing large-amount of weakly
labeled training data can be very effective in training powerful
models for many multimedia and computer vision tasks [6],
[25], [26], [27], [28].

Prior works [6] and [5] attempted to improve image-text
embedding models using weakly annotated image collection.
In [6], authors considered a stacked joint embedding ap-
proach for incorporating information from weakly annotated
Flickr1M dataset in learning image-text embedding. In [5],
authors presented an approach that can augment a typical pair-
wise ranking based supervised approach for joint image-text
embedding with web images and tags. Another relevant work
is [29], which does not use web data with tags, but proposes
an approach to use a un-annotated image collection with
an annotated collection in learning joint embedding models.
These approaches [6], [5], [29] are unlikely to be successful
when either the clean training set is very small, or the web
image collection has a high ratio of noisy and missing tags.

Tensor completion for multi-modal data analysis. Tensor
completion approaches focus on estimating the missing ele-
ments of partially observed tensors [30]. CP decomposition
[31], [32] and Tucker decomposition [33], [34] are most
widely used approaches for low-rank decomposition of ten-
sors. There are several works on completing tensors to estimate
missing data based on tensor decomposition [9], [35], [36],
[37]. In this work, we follow [37], [38] and develop a tensor
decomposition based tensor completion approach. We use CP
decomposition as it has been found that Tucker decomposition
based approaches are computationally less flexible than CP
approaches in handling large datasets in a distributed manner
as it needs to deal with complex core tensor [30].

There have been a few works on exploiting tensor decom-
position in tag refinement [36], [8], [39], [40], [41]. Most
of these works [36], [8], [39], [40] assume the availability
of additional user information along with images and tags
from social media sources and utilize Tucker decomposition
based approach for refinement. Although user information
may provide important cues in refining tags, it is unlikely
to be available in most cases. In this work, we explore the
use of a small clean dataset containing images and tags in
refining web image tags so that we can limit the propagation of
noisy tags in recovering missing tags. Several previous works
have shown that utilizing relationships among data sources as
auxiliary information helps to improve the quality of tensor



decomposition significantly when limited entries are observed
[9], [42], [38], [43]. Inspired by these works, we use intra-
modal similarity matrices as side information in the proposed
approach to deal with a high ratio of missing entries.

III. APPROACH

Our approach consists of two major steps. First, we present
the proposed tensor completion based approach for refining
web image tags. Then, we present the approach for learning
joint image-text embedding using pair-wise ranking loss.

A. Image Tag Refinement
The intuition is multi-dimensional relation that exists be-

tween web image with noisy tags and images with clean tags
can be modeled as a tensor. Analyzing the tensor can be ben-
eficial in refining web image tags. We consider having three
types of entities (i.e., web images, dataset images, and selected
tags) and the ternary relationship (based on tag association)
among the entities is modeled as a tensor. We follow AirCP
framework for our image-tag refinement approach [37]. A brief
illustration of the approach is shown in Fig. 2. We start by
giving notations and then present the approach.

Preliminaries: Throughout this paper, we use calligraphic
bold uppercase letters to denote tensors, uppercase letters to
denote matrices and lowercase letters to denote vectors. For
a third order tensor Y , its entries are denoted by Yijk. The
Frobenius norm of Y ∈ R|D|×|W |×|T | is defined as ||Y ||F =√∑|D|

i=1

∑|W |
j=1

∑|T |
k=1 Y2

ijk.
The CP tensor decomposition aims to approximate an order-

N tensor with R latent factors as a sum of R rank-one tensors
[44], [45]. For a third order tensor Y , it can be written as :

Y ≈ Ỹ = [[Z(1), Z(2), Z(3)]]

Here, [[Z(1), Z(2), Z(3)]] represents a weighted sum of rank-1
tensors where the vectors that specify the rank-1s are columns
of the factor matrices Z(1), Z(2), and Z(3).

1) Tag Refinement using CP tensor completion model:
We consider that we have access to three types of data, i.e.,
the images from dataset D = {di}|D|i=1 (for which we know
the associated tags correctly), the images from the web W =

{ni}|W |j=1 (for which we know some associated noisy tags), and
the selected tag set T = {ti}|T |k=1. Y denotes the tensor with
complete tri-modal dynamics. Since very few tags are found
in most images, Y is likely to be sparse and low-rank. If
the i-th image from the dataset and the j-th image from web
image collection are both annotated with the kth tag from the
selected tag set, Yijk = 1. Otherwise, Yijk = 0. However, as
web images mostly have a few associated noisy tags, we only
have a partial observation of Y at the start.

Our goal is to refine tags of web image set W by predicting
missing tags. We propose to model the recovery of missing
tags based on CP tensor completion model (1) as follows:

min
Z(n),Y

1

2
||Y − [[Z(1), Z(2), Z(3)]] ||2F +

λ

2

3∑
n=1

||Z(n)||2F ;

s.t. Υ ∗Y = O,
(1)
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Fig. 2. Brief Illustration of our CP decomposition based Tensor Completion
approach for Image-Tag Refinement.

O is the observations for Y . The latent factor matrices for the
clean dataset images, web image set, and tag set are denoted
respectively by Z(1) ∈ R|D|×R, Z(2) ∈ R|W |×R and Z(3) ∈
R|T |×R. Here, R is the number of latent factors. Υ is a non-
negative weight tensor with the same size as Y . If Yijk is
observed, Υijk = 1. Otherwise Υijk = 0.

Our goal is to estimate Y for recovering the missing
dynamics of tags based on the partially observed data. To
effectively recover Y , we also consider intra-relationships in
the three types of data as side information as described below.

2) Regularize model with auxiliary information: In our
case, we not only have ternary relational information among
inter-modal objects, but also information on the objects (im-
ages and tags) themselves. We consider using intra-modal
relations between entities as additional side information in
our tensor factorization framework. We can calculate the intra-
modal relationship between images based on image similarity
measures. Similarly, we can model the relationship between
tags by calculating the similarity between tags. In this work,
we use the cosine similarity. Given, feature representation
of images, the similarity between the images of the dataset
can be calculated as ΓDataset(i, j) = dTi dj/(||di||2 ||dj ||2).
ΓWeb and ΓTag similarity matrices are also calculated in a
similar way using cosine similarity measure. We utilize these
similarity matrices as auxiliary information. The idea is that
if two images are similar, the latent representations of these
two images should be similar. Therefore, we want to make the
latent representations of two similar entities to be close. This
can be obtained by minimizing the following loss:

LAUX =
∑
i,j

Γ(i, j) ||Z(n)
i,: − Z

(n)
j,: ||

2

=
∑
i,j

Z
(n)T

i,: Γ(i, j)Z
(n)
i,: −

∑
i,j

Z
(n)T

i,: Γ(i, j)Z
(n)
j,:

= tr(Z(n)TL Z(n))

where Z(n)
i,: is the ith row of the factor matrix Z(n) for the nth

mode of tensor Y (n ∈ {1, 2, 3}). D is a diagonal matrix with
Dij =

∑
j Γij and L = D − Γ is the Laplacian of similarity



matrix Γ. Adding auxiliary information, the Eq. 1 becomes:

min
Z(n),Y

1

2
||Y − [[Z(1), Z(2), Z(3)]] ||2F +

λ

2

3∑
n=1

||Z(n)||2F

+

3∑
n=1

αntr(Z
(n)TLn Z(n));

s.t. Υ ∗Y = O,

(2)

αn is a hyper-parameter to control the weight of auxiliary
information from different factors.

3) ADMM Optimization: We use alternating direction
method of multipliers (ADMM) [46], [47], [37] to solve our
optimization problem in Eq.2. The ADMM algorithm consists
of three main steps. First, an auxiliary variable is introduced
to separate the objective function into two different objectives.
Second, an augmented Lagrangian is formed combining both
linear and quadratic terms through a scaled dual variable.
Third, the augmented Lagrangian is minimized iteratively
with respect to the primal variables and the dual variable
until convergence. To facilitate optimization, we consider an
equivalent form of Eq. 2 introducing an auxiliary variable U :

min
Z(n),Y

1

2
||Y − [[Z(1), Z(2), Z(3)]] ||2F +

λ

2

3∑
n=1

||Z(n)||2F

+

3∑
n=1

αntr(U
(n)TLn U (n));

s.t. Υ ∗Y = O,Z(n) = U(n)

(3)

We can form augmented Lagrangian Lµ(U (n), Z(n),Λ(n))
with both linear and quadratic terms as follows:

Lµ(U(n), Z(n),Λ(n),Y) =
1

2
||Y − [[Z(1), Z(2), Z(3)]] ||2F

+
λ

2

3∑
n=1

||Z(n)||2F +

3∑
n=1

αntr(U
(n)T Ln U(n)) +

1

2
||Υ ∗Y −O||2F

+

3∑
n=1

< Λ(n), Z(n) − U(n) > +

3∑
n=1

µ

2
||Z(n) − U(n)||2F

(4)
where Λ is a dual variable, 〈., .〉 denote the inner product, ‖.‖F
is the Frobenius norm and µ > 0 is a penalty parameter.

To solve the problem in Eq. 4 at each iteration t, ADMM
updates the variables in alternating fashion as:

U
(n)
t+1 = arg min

U(n)

Lµ(Ut, Zt,Λt,Yt) (5)

Z
(n)
t+1 = arg min

Z(n)

Lµ(Ut+1, Zt,Λt,Yt) (6)

Yt+1 = arg min
Y

Lµ(Ut+1, Zt+1,Λt+1,Yt) (7)

Λ
(n)
t+1 = arg min

Λ
Lµ(Ut+1, Zt+1,Λt,Yt) (8)

In the following, we present the derivation of specific update
rules for Eq. 6, Eq. 5, Eq. 8 and Eq.13.

Update U (n) when fixing others: To update U (n) (e.g.,
U (1) or U (2) or U (3)) after ignoring the variables that are
irrelevant to U (n), the problem (6) becomes:

min
U(n)

αntr(U
(n)T L U(n))+ < Λ(n), Z(n) − U(n) > +

µ

2
||Z(n) − U(n)||2F

On combining linear and quadratic error terms into a single
term by scaling the dual variable Λ, we get the following:

min
U(n)

αntr(U
(n)TLn U (n)) +

µ

2
‖Z(n) − U (n) + Λ(n)/µ‖

2

F (9)

It is a convex quadratic problem. Solving for U (n) yields:

U
(n)
t+1 = (µI + αnLn)−1(µZ

(n)
t − Λ

(n)
t ) (10)

Update Z(n) when fixing others: To update Z(n) (n ∈
1, 2, 3), the method alternates among the modes, fixing every
factor matrix but Z(n) and solving for it. The objective
function can be written as follows:

min
Z(n)

1

2
||Y(n) − Z(n)A(n)T ||2F +

λ

2
||Z(n)||2F

+
µ

2
‖Z(n) − U (n) + Λ(n)/µ‖

2

F

(11)

Here, Y(n) represents the mode-n matrix unfolding of tensor
Y . the mode-n matricization of Ỹ can be written in terms the
factor matrices as ˜Y(n) = Z(n)A(n)T where A(n) = (Z(M) �
..Z(n+1)�Z(n−1)� ..�Z(1))|M=3. Here, � denotes Khatri-
Rao product. Now, solving Eq. 11 for Z(n) yields:

Z
(n)
t+1 = (A(n) A(n)T + λI + µI)−1 (Yt(n) A

(n)T + µU
(n)
t+1 + Λ

(n)
t )
(12)

Update Y: To solve for Y , we can write the objective in
Eq. 4 as follows:

min
Y

1

2
||Y − [[Z(1), Z(2), Z(3)]] ||2F +

1

2
||Υ ∗Y −O||2F (13)

Now solving for Y yields:

Yt+1 = O + (1−Υ) ∗ [[Z(1),Z(2),Z(3)]] (14)

Update Λ(n): Having (U,Z) fixed, perform a gradient
ascent update with step size µ on Lagrange multipliers as

Λ
(n)
t+1 = Λ

(n)
t + µ(U

(n)
t+1 − Z

(n)
t+1) (15)

The overall ADMM procedure is shown in Algo. 1. After
convergence, we have the final completed tensor Y . From
Y , we can recover the tags for our web image collection.
Summing Y over dataset image dimensions, we can have
a matrix whose values indicate the strength of association
between web images and tags.

Algorithm 1 An ADMM solver for (Eq. 4)
1: Input: O, Υ, Γ(n) and λ, N = 3, n = 1 : N , µ > 0, Th =

10−5, nIter = 500
2: Initialization: Initialize U (n), Z(n),Λ(n), iter to zero, Y = O.
3: while (max{||Z(n) − U (n)||F ;n = 1, ..., N} < Th) or (iter
≤ nIter) do

4: U
(n)
t+1 ← (µI + αnLn)−1(µZ

(n)
t − Λ

(n)
t );

5: Z
(n)
t+1 ← (A(n) A(n)T +λI +µI)−1 (Yt(n) A

(n)T +µU
(n)
t+1 +

Λ
(n)
t );

6: Yt+1 ← O + (1−Υ) ∗ [[Z(1),Z(2),Z(3)]];
7: Λ

(n)
t+1 ← Λ

(n)
t + µ(U

(n)
t+1 − Z

(n)
t+1);

8: iter ← iter + 1;
9: end while

10: Output: Tensor Y , Factor Matrices Z(1), Z(2) and Z(3).



B. Joint Embedding

Our framework includes a web image tag refinement ap-
proach in the webly supervised joint embedding framework.
The framework attempts at attaining better performance com-
pared to the image-text embedding baselines that directly uses
raw image and tags in training without any refinement. Pair-
wise ranking loss has been shown to be successful in many
prior works to learn robust joint embedding models for image-
text retrieval [1], [3], [19], [13], and also in web supervised
learning of joint embeddings [5]. We also optimize ranking
loss function in learning webly supervised joint embedding
models to show the benefits of the proposed tag refinement
step in the overall image-text retrieval performance.

We now briefly describe the method for learning joint
visual-semantic embedding utilizing pair-wise ranking loss
with a two-branch neural network framework [1], [3], [5],
[20]. Optimizing the pair-wise ranking loss attempts to ensure
that for each visual input, the matching text inputs should be
closer than the non-matching text inputs in the joint image-text
embedding space or vice versa. In the two-branch framework,
one of the branches consists of a neural network to extract
features from text and the other consists of a network to extract
features from visual inputs. These branches are followed by
fully connected layers focusing on projecting the text and
visual features to a joint space where it is possible to directly
compare the cross-modal inputs.

We denote the image feature vector as vp (vp ∈ RV )
and the paired text feature vector as wp (wp ∈ RT ). Given
the representation of training pairs, the goal is to learn a
joint embedding characterized by WV and WT such that the
matching image-text pairs are closer in the joint space than
the non-matching pairs. WV and WT denotes the weights
of fully connected embedding layers. D is the dimension
of the joint space. The visual features vp is projected into
the embedding as ip = WV vp (ip ∈ RD). Similiarly, and
WT that projects input text contents wp to the joint space as
tp = WTwp (tp ∈ RD). For a matching pair (ip, tp), t−p is a
non-matching text embedding and i−p is a non-matching image
embedding. The ranking loss function Lp for the matching
image-text pair (ip, tp) can be expressed as follows,

Lp =
∑
t−p

max
[
0, α− S(ip, tp) + S(ip, t

−
p )
]

+
∑
i−p

max
[
0, α− S(tp, ip) + S(tp, i

−
p )
] (16)

where S(ip, tp) is the function to measure the similarity
between the image embedding and text embedding in the joint
space. α represents the margin value for the loss. We use
cosine similarity which has been widely used in prior works
on learning joint image-text embedding models [1], [3].

IV. EXPERIMENTS

We perform experiments on two benchmark datasets with
the goal of evaluating the performance of including our tag re-
finement approach with joint embedding baselines. As existing

works on webly supervised learning of image-text embedding
directly use web images and associated tags without any
refinement in training, our work is the first to show results
with using an initial refinement step. Our framework would
attempt at attaining significantly better performance than the
baselines that web image and tags without refinement.

A. Datasets and Evaluation Metrics

In this section, we present a brief description of the datasets
used in this work. We also discuss the evaluation metrics.

Datasets. We experiment with Flickr30K dataset ([48], [49])
and MSCOCO dataset ([50]). Flickr30K includes about 31K
images harvested from Flickr and each image has five captions.
We follow the widely used split provided by [51], where,
train, validation and test set contain 29K, 1K, and 1K images,
respectively. MSCOCO dataset ([50]) contains about 120K
images and each image is described by 5 captions. We use
the split following [51]. In this split, the dataset is divided
into about 82K training, 5K validation, and 5K test images.
In most of the previous works, the results are reported by
averaging over 5 folds of 1K test images [1], [52].

Evaluation Metrics. For the evaluation of tensor comple-
tion performance, we use relative error, which is one of the
most commonly used metrics in evaluating the performance of
tensor completion algorithms. The relative error for predicted
tensor is calculated by the standard error in tensor prediction
(Frobenius norm difference between ground-truth tensor and
the predicted tensor), divided by the Frobenius norm of the
ground-truth tensor. The relative error for observed tensor is
calculated in a similar way.

For image-text retrieval, we use a rank based metric which
is commonly used in prior works on different cross-modal
retrieval tasks [1], [3], [5], [20], [53]. We measure performance
by R@K (Recall at K) and MedR (Median Rank). R@K
calculates the percentage of samples for which the ground-
truth (GT) annotation is ranked within the top-K retrieved
results to the query. We also report the median rank which
calculates the median of the GT results in the retrieval ranking.

B. Experimental Setup

Data Preparation. We are interested in estimating the
influence of noisy or missing tags on the performance of our
approach. However, it is very difficult to collect a large number
of web images with tags and label them. Hence, we create
synthetic data based on image-text pairs from datasets (e.g.,
Flickr30K) to evaluate the effect of our image-tag refinement
approach. First, we create a synthetic clean image-tag dataset
from the training sets of the datasets. For each image, we
collect the unique nouns and verbs as image tags from the
associated 5 sentences. We retain only the top 1000 occurring
words in the training set.

We then create noisy image-tag datasets from the synthetic
clean set based on the missing ratio of tags (e.g., 30%, 50%,
70%) we would like to consider in evaluating the approach.
In this regard, given a missing ratio (%), we randomly select
the overall number of tags to be replaced. We remove most



TABLE I
THIS TABLE PRESENTS THE RETRIEVAL RESULTS ON FLICKR30K AND MSCOCO DATASET. ACTUAL INDICATES THE INITIAL SYNTHETIC CLEAN

IMAGE-TAG SET (NO MISSING DATA) CREATED BY EXTRACTING UNIQUE NOUN AND VERBS FROM CAPTIONS ASSOCIATED WITH IMAGES AS TAGS.
OBSERVED INDICATES THE SYNTHETIC NOISY WEB IMAGE-TAG SET CONSTRUCTED BY REMOVING TAGS BASED ON A GIVEN MISSING (%). PREDICTED

INDICATES THE REFINED IMAGE-TAG SET OBTAINED BY REFINING THE OBSERVED SET APPLYING THE PROPOSED TENSOR COMPLETION APPROACH.
FOLLOWING [1], WE USE VGG16 FEATURE AND PAIRWISE RANKING LOSS FOR TRAINING JOINT EMBEDDING MODELS.

Task Tag Quality
FLICKR30K MSCOCO

Missing Data (%) = 30 Missing Data (%) = 50 Missing Data (%) = 70 Missing Data (%) = 30 Missing Data (%) = 50 Missing Data (%) = 70
R@1 R@10 MedR R@1 R@10 MedR R@1 R@10 MedR R@1 R@10 MedR R@1 R@10 MedR R@1 R@10 MedR

Image to
Text

Actual 5.5 24.7 57 5.5 24.7 57 5.5 24.7 57 9.7 40.6 17 9.7 40.6 17 9.7 40.6 17
Observed 4.7 18.7 97 1.4 9.3 280 1.8 7.7 365 8.8 37.5 20 8.6 33.7 27 3.8 19.3 136
Predicted 4.3 21.2 79 2.8 14.7 186 2.5 14.7 163 9.7 40.0 19 9.2 35.4 25 6.8 28.9 34

Text to
Image

Actual 2.8 14.7 137 2.8 14.7 137 2.8 14.7 137 6.0 30.2 35 6.0 30.2 35 6.0 30.2 35
Observed 1.6 10.1 200 0.7 4.3 328 0.4 4.4 337 5.2 22.8 70 4.0 20.9 67 2.7 16.6 107
Predicted 2.3 11.4 191 1.1 7.5 230 0.5 3.6 385 4.9 22.8 69 3.7 18 105 3.2 14.9 110

of the tags and replace a few tags with random English words
from the dictionary. In this way, we create several noisy
datasets based on different missing ratios. These noisy datasets
are considered as our observed set. From the synthetic clean
datasets, we utilize the first 1K images from the training set
as our small clean image-text set as D in tensor completion
(|D| = 1000). The noisy image-tag dataset is created from the
remaining training images and these images are considered as
images from web W . The top 1000 occurring words in the
training set are considered as the tags set T (|T |=1000).

Implementation Details. In training the joint embedding
model, we use VGG16 (pre-trained on ImageNet) as the visual
feature encoder. As we consider having tags for the image set,
we do not have sequential information from sentences. We
utilize the average of the Word2Vec vectors corresponding
to the tags as the text representation. The dimension of the
joint space is set to 1024. We implemented the network
in PyTorch [54]. The embedding network is trained using
Stochastic Gradient Descent dividing the dataset into batches
of size 128. Hence, the approach considers only the negative
samples selected in a stochastic manner from a mini-batch and
is more efficient to train. We use a starting learning rate of
0.002, and it is lowered every 15 epoch by a factor of 10. The
margin parameter alpha is empirically chosen as 0.2. The best
performing model on the validation set is selected.

The tensor completion approach is implemented using Mat-
lab tensor toolbox [55]. In the constructed observed tensor T ,
we only know the observed non-zero entries. However, we do
not have any prior information about zero entries whether they
are missing or not relevant. However, for a good reconstruction
of the tensor, a certain amount of observed entries is often
required [30]. We randomly sample zeros from remaining
entries to have an equal observed ratio as non-zeros. We vary
tensor rank from 10 to 20, and empirically fix as 20, which
we found to be consistently performing well in terms of lower
relative standard error in tensor completion. We use 500 as the
maximum number of iterations allowed.

C. Results
In this section, we present quantitative results to evaluate

the proposed approach. We evaluate the performance of the
image tag set predicted by our approach compared to the initial

clean set, observed set and baselines in image-text retrieval on
the Flickr30K and MSCOCO dataset (Sec. IV-C1). We varied
the percentage of missing tags among [30%, 50%, 70%]. The
percentages are chosen for experimentation. We also compare
the proposed tensor completion approach with baselines in
terms of relative error in image tag refinement (Sec. IV-C2).

1) Experiments on Cross-Modal Image-Text Retrieval :
To understand the effect of the proposed tag refinement
approach in overall cross-modal image-text retrieval perfor-
mance, we evaluate on data prepared from Flickr30K and
MSCOCO. While utilizing the complete image-sentence re-
trieval train sets (e.g., MSCOCO) are useful to experiment
with web-supervised learning, we consider the more practical
case of utilizing web images with a very small subset of
the clean datasets. Hence, the goal of the experiments is not
to compete with the best reported results in these datasets.
The goal is to evaluate whether the proposed approach is
capable of boosting the performance of state-of-the-art joint
embedding based image-text retrieval approaches trained with
a small clean set of image-text pairs utilizing freely available
web images. We believe, our setting, therefore, more precisely
reflect practical challenges caused by noisy web images. The
performance is reported in Table I where Observed(% missing
of actual) indicates that the observed image-tag set is created
by removing tags from actual/clean image-tag set by chosen
missing/unobserved data percentage(%).

Results on Flickr30K. We compare retrieval results based
on the joint embedding models trained using the actual set,
the observed set, and the predicted set. From Table I, we have
several key observations. First, we observe that the predicted
set shows better performance compared to the observed in
almost all metrics. We find in case of 30% missing data, the
observed set performs better than predicted set in R@1 in
the image to text retrieval. However, the predicted set shows
performance improvement in the other metrics. We observe
similar improvements in the case of other missing data ratios.
Second, we see that as we increase the percentage of missing
data, the model learned using the predicted set in general
performs significantly better than the model learned using the
observed set. Initially, in the case of 30% missing data, the
performance of predicted and observed set is comparable. As



the missing percentage increases, the observed set shows a
significant drop in performance. However, the predicted set is
able to limit the performance drop by recovering some related
tags. We see the predicted set improves the average median
rank by about 27% (relative) from the observed set.

Results on MSCOCO. Similar to Flickr30K in Table I, it
is evident from the Table that our proposed tag refinement
approach helps to improve performance over directly using
images with raw tags (observed set). As expected, the perfor-
mance drops for both observed set and predicted set as the
percentage of missing entries from the actual set increase. We
again see that in case of a low missing ratio, the observed
and predicted set shows comparable performance. However,
the performance of the prediction method is promising as it
shows significant improvement compared to the observed set
when the missing data percentage is high (70%). We see a
3% absolute improvement in R@1 and 102 point decrease in
median rank using the proposed approach in the image to text
retrieval task with 70% missing data.

2) Relative Errors in Tensor Completion: In Table II, we
compare relative errors of predicted tensor and observed tensor
for different percentages of missing entries. We also compare
with matrix-based image tag refinement approach Matrix-
LRCTE [56], and baseline multi-way tucker and parafac model
for handling missing data [57]. From the Table II, we find
that the predicted tensor results in consistently decreasing the
relative error compared to the observed tensor across missing
percentages. The average improvement using the proposed
approach in relative error is about 10.21%. The maximum
improvement of 13.3% is found in MSCOCO with 30%
missing data and the minimum improvement of 8.7% is found
in Flickr30K with 30% missing data.

Comparison with Baselines. We first evaluate the contri-
bution of the CP regularization terms in overall improvement.
From Table II for Flickr30k with missing ratio[70%, 50%,
30%], the relative error of observed tensor is [0.839, 0.721,
0.563] and the proposed regularized CP achieves significantly
less [0.762, 0.649, 0.514]. However, the relative error for
the proposed without regularization is [0.826, 0.705, 0.533],
which is on par with observed and significantly worse than the
proposed approach. In MSCOCO, we again find that the reg-
ularization term contributes significantly to reducing relative
error. We also noticed that cross-modal retrieval performance
degrades when regularization term is not used.

We compare with the image tag refinement approach
Matrix-LRCTE [56], which is a matrix refinement approach
based on low-rank, content-tag prior and error sparsity [56].
For missing [30%,50%,70%] in Flickr30K, [56] achieves lim-
ited improvement of [2.9%, 1.7%, 0.6%) from the observed,
whereas the proposed achieves a larger improvement of [8.7%,
10.0%, 9.2%] as reported in Table II. We also find a similar
trend in MSCOCO evaluation. We could not compare with
prior tensor completion based tag refinement approaches [8],
[40], [39] as these works assume the availability of additional
user information from social media for tag refinement.

TABLE II
RELATIVE ERRORS (COMPARED TO THE GROUND-TRUTH/ACTUAL

TENSOR) FOR RECOVERING MISSING TAGS (BEFORE AND AFTER TENSOR
COMPLETION) FOR DIFFERENT PERCENTAGE OF MISSING ENTRIES. WE

OBSERVE THAT THE PREDICTED TENSOR GIVES ON AVERAGE 10.2%
IMPROVEMENT OVER THE OBSERVED TENSOR.

Method Flickr30K MSCOCO
30% 50% 70% 30% 50% 70%

Observed 0.563 0.721 0.839 0.534 0.703 0.838
Parafac 0.732 0.830 0.891 0.748 0.848 0.902
Tucker 0.726 0.825 0.880 0.728 0.813 0.883
Matrix-LRCTE 0.546 0.709 0.834 0.521 0.686 0.828
Proposed (No
Regularization)

0.533 0.705 0.826 0.516 0.689 0.822

Proposed 0.514 0.649 0.762 0.463 0.635 0.751

We also experimented with baseline multi-way tucker and
parafac model for handling missing data following n-way
toolbox [57], which uses an expectation-maximization scheme
on top of masking away the missing data from the residuals.
We observed these approaches fail to improve performance
over the observed set and even consistently show higher
relative error in all the cases. In Flickr30k, We find the
predicted tensor shows a relative error of [0.726, 0.821, 0.880]
with the tucker model, and [0.732, 0.815, 0.893] with the
parafac model, for missing [30%,50%,70%] of data, which is
significantly worse than observed and the proposed approach.
We also observe a similar trend in MSCOCO. We believe this
is because of our observed tensor is extremely sparse. As only
a small set of tags from the large tag list are associated with
each image from dataset and web, the tensor capturing tri-
modal dynamics has very few non-zero entries. These baseline
tucker and parafac completion approaches [57] fail to handle
missing data in such an extremely sparse tensor.

V. CONCLUSION

We address the problem of utilizing web images in training
robust image-text embedding models. Directly using web
images with raw tags in training may significantly affect the
performance of the webly supervised approaches when the
ratio of missing tags is high and available clean labeled data
is very limited. In this regard, we propose a CP decomposition
based approach to refine tags of web images by modeling the
ternary inter-relation between the web image collection and the
clean dataset images (based on associated tags) as a tensor and
utilizing intra-modal similarity as side information. Our image
tag refinement approach combined with supervised image-text
embedding approaches provide a way to learn robust joint
embedding models in the presence of significant noise from
web data and limited clean labeled data. Experiments on data
prepared from benchmark datasets with different percentage
of missing data demonstrate that the proposed approach can
successfully recover more than 10% missing data on average
and consequently helps to achieve a consistent performance
gain in cross-modal image-text retrieval task.
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