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(a) Raw image (b) Segmented object masks wih depth (c) AR with occlusions
Fig. 1. Example Augmented Reality (AR) with occlusion rendering of real and virtual objects: (a) Input color image; (b) Object instances
detected in the input color images and their depth inferred using outdoor terrain model; (c) Final AR rendering where closer synthethic
excavator partially occludes row of real cars, while real cars properly occlude farther synthetic excavator.

Abstract— Proper occlusion based rendering is very important to achieve realism in all indoor and outdoor Augmented Reality (AR)
applications. This paper addresses the problem of fast and accurate dynamic occlusion reasoning by real objects in the scene for large
scale outdoor AR applications. Conceptually, proper occlusion reasoning requires an estimate of depth for every point in augmented
scene which is technically hard to achieve for outdoor scenarios, especially in the presence of moving objects. We propose a method
to detect and automatically infer the depth for real objects in the scene without explicit detailed scene modeling and depth sensing (e.g.
without using sensors such as 3D-LiDAR). Specifically, we employ instance segmentation of color image data to detect real dynamic
objects in the scene and use either a top-down terrain elevation model or deep learning based monocular depth estimation model to
infer their metric distance from the camera for proper occlusion reasoning in real time. The realized solution is implemented in a low
latency real-time framework for video-see-though AR and is directly extendable to optical-see-through AR. We minimize latency in
depth reasoning and occlusion rendering by doing semantic object tracking and prediction in video frames.

Index Terms—Augmented reality, occlusion reasoning, depth inference, object tracking

1 INTRODUCTION

1.1 Motivation

Augmented reality (AR) became extremely popular in recent years and
continuously moving from research labs to the industrial and consumer
application areas. While it is possible to purchase very compelling AR
systems for indoor short-range use, outdoor geo-located AR solutions
still pose a significant number of challenges. Specifically, outdoor
AR systems require better quality and brighter displays, high-accuracy
head tracking capable of robust operation in geo-location coordinate
space and in the open area; system itself must be robust to various
temperature, inclement weather, dust and mechanical impacts.

Another important aspect of AR that is still overlooked by many con-
temporary systems (especially, outdoor systems) is the proper treatment
of occlusions by real objects. A typical challenge of AR is to properly
render synthetic objects that may be partially or fully occluded by real
objects in the scene that are not a part of the model, as depicted in
Fig. 1. The occlusion-based reasoning for rendering must be accurate
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with respect to object boundaries and stable over time. Occlusion rea-
soning is directly guided by depth ordering and naturally requires some
knowledge of distance at all image areas that are to be augmented. This
knowledge can come either from modeling of the scene and interaction
objects or directly retrieving depth information. Direct dense depth
measuring can be conducted via stereo cameras, but they generally
have very poor depth resolution at far distances. For compact systems,
baselines of 5-15 centimeters are practically possible which cannot
guarantee good depth estimation farther than 10-20 meters. At the
same time, outdoor AR operates on a larger scale and longer range
estimations on the order of hundreds of meters are desirable. The latter
can be achieved by LiDARs, but their cost, power consumption, bulki-
ness and lack of resolution make it challenging to use for head-worn
applications at present moment. In this work, we explore yet another
technique to estimate the scene depth using semantic reasoning and
deep learning methods and provide a method on how to implement it
within the realtime AR pipeline.

1.2 Previous Work

Even for earlier AR systems it was widely acknowledged that proper
occlusion rendering is necessary to achieve compelling experience [2].
At the same time, extracting clean occlusion boundaries proved to
be quite difficult and proposed solutions followed either static model-
based or depth-based approaches, or some combination [25]. Many
earlier endeavors concentrated mostly on very contrived occlusion
examples, such as static background or occlusions of specific types
[5, 16, 29, 32]. Simultaneously, various real-time and near-real-time



Fig. 2. Realtime Augmented Reality with dynamic occlusions processing pipeline. Raw data comes from the sensor block into the fast Naviga-
tion module that produces low-latency head pose estimates. Occlusion masks with depth maps are generated by the slow DepthInference module
and its outcome is warped toward the last-tracked head pose using the fast ObjectTracking module. Renderer module receives the input from
Navigation and ObjectTracking modules to generates final AR output in real time with low latency.

stereo solutions were proposed over the years to extract 3D objects
boundaries [14,15,24,26,30,33]. There more recent methods proved to
be quite effective in situations where the range is limited and relatively
short (on the order of dozen of meters). Additionally, methods that
exploit object tracking in possible combination with the stereo [9,
27] or object’s image projection on a simple terrain model [31] have
also emerged. Nowadays, availability of commercial depth cameras
(e.g., Intel Realsense, Etron, ZED) can also provide a good quality
stereo solution that is very beneficial, especially for near-range indoor
applications. Finally, there exist methods like [13] that efficiently
densify the sparse point reconstruction coming as byproduct from
simultaneous localization and mapping (SLAM) output used for pose
tracking and allow for close range occlusion reasoning.

On the other hand, for long-range outdoor applications, where inser-
tions can be required up to be hundreds of meters to a kilometer, stereo-
based depth estimation is not practically feasible. Recent advances in
LiDAR technology made these sensors available and more affordable
to general public and very promising methods for densifying the Li-
DAR depth measurement using color images have emerged [18, 23, 28].
Despite that, LiDAR sensors are still more expensive and too bulky
for head-worn systems. Furthermore, some scenarios may even have
restriction on IR light emission (interference with other devices, like
light-sensitive cameras). Thus, we are currently interested in the a solu-
tion that would make most of current AR setups capable of occlusion
handling without non-trivial hardware upgrade.

As a radical departure from standard methods, authors of [8] pro-
posed to re-use the terrain model of the scene to approximate structural
scene depth, then use semantic segmentation to outline possible occlud-
ers (objects like cars, people, trees, etc.) and then estimate their depth
from the terrain rendering by assuming detected objects reside on the
ground plane (depth value is assigned as corresponding to the lowest
intersection point with the terrain model). Authors [8] demonstrated
their approach is capable of generating proper occlusion arrangements;
however, it is mostly suitable for offline processing. Since depth es-
timation and occlusion detection rely on computationally intensive
inference and rendering mechanisms, non-trivial adjustments must be
made to allow such architecture to run at high framerate, low latency,
and in dynamic real scenarios especially on efficient small form-factor
low-power hardware.

1.3 Contribution
To satisfy the objectives and taking previous research into account, this
paper offers the following contributions that allow to achieve accurate
and efficient occlusion rendering as depicted in Fig. 1. We present
an extended AR pipeline in Sec. 2.1 that is designed to perform AR
augmentation with dynamic occlusions in real-time taking into con-
sideration the generally slower nature of depth inference mechanism.
Specifically, we propose to extract candidate occluder entities via se-
mantic instance segmentation (Sec. 2.3) and infer their metric distance
either from the terrain model rendered from specific camera viewpoint

or neural depth estimation (Sec. 2.4). The important contribution is
two-fold: (i) instead of semantic segmentation used in [8], we rely on
instance segmentation which provides precise occlusion boundaries and
allows the system to distinguish objects even if they self-occlude each
other in the image rather than incorrectly treating them as one entity;
(ii) we effectively compensate for the higher latency of object detection
and depth rendering components by adding additional tracking mod-
ule that efficiently adjusts occluder masks to the latest AR image and
pose (Sec. 2.5); furthermore, we can extrapolate occluder masks to fu-
ture time and compensate for optical-see through latency requirements.
This ability to extrapolate effectively also allows us to process fewer
frames and for the pipeline to run on more power-efficient hardware.
The framework is currently implemented and executed on a backpack
VR computer and we have demonstrated applicability and robustness
of the proposed framework of AR with dynamic occlusion reasoning.

2 TECHNICAL APPROACH

2.1 AR with occlusions pipeline
The conceptual workflow of the realtime AR with dynamic occlu-
sions pipeline is depicted in Fig. 2. Raw data (camera images, IMU,
GPS, magnetometer) comes from the sensor block into the Naviga-
tion module. In a classical AR, the Navigation module produces very
low-latency head pose estimate and feeds it into the Renderer.

In case of occlusion, depth map as well as its corresponding color
image is passed on Renderer to generate texture masks to occlude
proper portions of the synthetic avatars. The naive system architecture
would be a sequential connection from Navigation to DepthInference to
Renderer and that is how previous work [8] has it set up. However,
depth estimation process of DepthInference is much slower than Navi-
gation module, which means the system would not run in real time and
would exhibit huge latency – its performance would be limited by the
throughput of the slowest node DepthInference.

In order to enable real time performance and hide the latency pro-
duced by DepthInference module, we introduce another ObjectTrack-
ing module to warp last-inferred depth map at time t0 to the latest
output pose from low-latency Navigation module at time t1. Object-
Tracking module tracks the objects of interest from time t0 to time t1 in
an efficient manner, allowing proper occlusion reasoning by this object
in the latest AR frame t1, as explained in Sec. 2.5 below.

2.2 Navigation module
Our Navigation module is a visual-inertial tracking system that uses
several sensors to allow for geo-located real-time pose estimation: 6-
axis IMU (3-axis gyroscope and 3-axis accelerometer), monochrome
global shutter stereo camera for tracking, high-resolution RGB color
camera for AR augmentation and optional geo-landmark matching,
GPS device and magnetometer for global location and orientation
updates. The tracking algorithm itself is adapted from [20, 22] that is
based on error state Extended Kalman Filter (EKF) for visual-inertial



(a) Raw image (b) Detected objects
Fig. 3. Example raw images (a) and corresponding object detection
results (b). Each object silhouette is modeled as a planar entity in 3D
space, which serves as efficient occlusion mask for AR insertion.

(a) Raw image (b) Terrain from image viewpoint

(c) Terrain database (top view) (d) Image and depth overlaid
Fig. 4. Depth estimation from terrain model. Color image and its es-
timated pose (a) is used to render the terrain data (b) from the image
viewpoint as in (c). The quality of pose estimation is critical for proper
terrain rendering and consequent depth prediction for each input color
image, as demonstrated in overlay (d).

odometry and is an extension of the seminal work of [19] with several
important differences and additions: (i) reliance on a small form-factor
lightweight MEMs IMU of inferior performance (in comparison to
the one used in [19]) which requires more often filter updates to limit
higher drift rate (ii) simple but computationally efficient Harris corner
tracker that allows to perform filter update at every frame and use
of robust two-point gyro guided relative pose estimation constraint
(iii) feature tracks over three time-consecutive frames enforce a more
robust geometric pose estimation constraint (iv) measurement model
is extended to include monocular feature tracks from both left and
right of the stereo cameras as well as the stereo 3D tracks constraints
which allows to utilize stereo depth information while being robust
to significant occlusion and saturation in a stereo pair (v) dynamic
geo-landmark database update for global orientation correction that
relies on gravity-aligned feature descriptor matching.

The employed navigation solution is comparable to other state-of-the-
art visual-inertial systems and achieves low dead-reckoning positional
drift rates around 0.1%, global heading angle error of 0.1◦ and global
position error within roughly 2.5 meters (constrained by GPS). We also
make use of the terrain map either in the form of top down LiDAR scan
or digital elevation model (DEM) for reliable global height estimation
as well as proper placement of AR insertions on the ground plane.

The Navigation module produces global geo-located pose P with
minimal latency at the color camera video rate for video see-through
(VST) AR, and can also yield IMU-rate poses (or higher) for Optical
see-through (OST) AR.

2.3 Occlusion mask segmentation
Occlusion masks provide very pertinent information for the develop-
ment of effective augmented reality systems. The most obvious aspect
is model-based occlusions, such as from terrain, buildings or trees –
entities that could be modeled via 3D reconstruction beforehand and
effectively used in scene interaction. The outstanding challenge is
presented by dynamic objects (e.g., vehicles, pedestrians) that are not
part of static scenes. In this regard, we propose to apply an instance
segmentation model to infer the instances of these classes of objects

from the camera image and use the corresponding segmented masks to
enrich the occlusion information. Specifically, we rely on a fully con-
volutional deep neural network-based model YOLACT [6] (trained on
COCO dataset [17]) for real-time instance segmentation. The YOLACT
model is capable of efficiently detecting different classes of objects that
are not modeled in the scene (people, cars, bicycles, traffic signs) and
provide the associated binary mask in the form of a silhouette. We also
evaluated Mask R-CNN based instance segmentation model [12], and
empirically choose YOLACT due to better speed with similar accuracy.

Prior work [8] relied on SegNet semantic segmentation model [3] to
estimate the depth of objects in the scene. However, due to the inherent
limitations of semantic segmentation models, the model is not able to
treat multiple objects of the same class as distinct objects. Hence, the
system [8] would suffer significantly when multiple objects of the same
classes are occluded in the scene (as in Fig. 1). On the contrary, our
system would be able to reliably estimate the depth of occluder objects
in such scenarios, as the instance segmentation model can distinguish
instances within categories. A couple of output examples are shown in
Fig. 3. Each object silhouette is modeled as a planar entity in 3D space.
This simplifying assumption greatly speeds up depth and occlusion
procession which effectively serving for the purpose of AR – very good
3D boundary delineation and proper depth ordering, rather than depth
accuracy within the object itself that barely affects occlusion reasoning.
The error analysis of this method is presented in Sec. 3.2 below.

2.4 Depth estimation
It is argued in Sec. 1.2 that dense depth estimation via explicit sensing
(e.g., stereo, LiDARs) is currently unfeasible for most outdoor head-
worn AR systems. Therefore, inspired by [8], we propose DepthInfer-
ence module that generates a full range dense depth map for camera
frames based on geo-referenced terrain model and occlusion mask of
objects, as depicted in Fig. 4. Since we utilize the terrain model for
proper AR vehicle and effect placement, for every frame at time t we
could also render the 3D point cloud from the viewpoint defined by
navigation pose Pt and camera intrinsic matrix K (e.g., as in Fig. 4b).
The terrain model itself could be a minimal digital elevation model
(DEM) that is publicly available for the majority of the Earth locations,
or top-down aerial lidar scans that have ground structures, or even full
3D reconstruction from the aerial drones that have the most details
for the static scenes, like buildings, trees and even foliage. In this
work, we utilize aerial LIDAR point cloud collected from United States
Geological Survey (USGS) website as the geo-referenced data.

Once the described-above depth-map is rendered, the distance for
each of the objects silhouettes detected as in Sec. 2.3 is inferred as the
depth value corresponding to the lowest point on the silhouette accord-
ing to the gravity vector deduced from the rotation of the navigation
pose P – here, for simplicity and speed, we rely on an assumption that
objects reside on the ground plane, which is almost always true for cars,
trucks, bicycles, people, dumpsters, etc.

We also considered an alternative depth estimation technique from
a single color image. Specifically, we used the DenseDepth inference
network [1] trained on KITTI dataset [10] that is fairly similar to
our outdoor scenarios. Furthermore, we calibrate the output depth
values based on the corresponding sparse stereo matches obtained from
the tracking camera. Specifically, we use the sparse stereo matches
from our tracking camera to measure “true” depth of some points
in the AR camera image – based on these samples, we can adjust a
linear mapping from network output values to metric depth values.
We found this adjustment useful because while the scenarios covered
in KITTY dataset generally match our outdoor scenario, the camera
parameters of the AR system (focal length, aspect ratio and hence
fields of view) are typically different from the camera parameters of
the training dataset. Some depth inference examples are depicted in
Fig. 10 including comparison to DfT technique which is detailed in
section Sec. 3.2.

2.5 Dynamic occlusion prediction
Due to intentionaly asynchronous nature of the proposed AR pipeline
in Fig. 2, Navigation and DepthInference run with different rates and



Fig. 5. Dynamic object tracking via ObjectTracking module. The objective is to track each occluder mask detected at time t0 to a more recent time of
AR rendering t1. Initially, camera motion is partially compensated using rotation-based homography pre-warp; then each object template is tracked
from frame t0 to t1 using hierarchical affine model-based tracking over Laplacian pyramid. See Sec. 2.5 for details.

latency (latter is much slower). Still, the rendering of background
cplor image produced at some time t1 and occlusion mask produced at
slightly earlier time t0 generally results in a compelling visual experi-
ence for static objects, provided that computed corresponding poses
P0 and P1 are accurate. The AR illusion only breaks down either when
planar silhouette is too simplistic to capture object structure, or objects
themselves are moving with respect to the scene. The proposed Ob-
jectTracking module takes care of these shortcomings by performing
necessary adjustment of occlusion masks detected at time t0 toward a
later time t1.

The purpose of ObjectTracking module is to track individual occlu-
sion masks from time t0 to time t1 and is schematically visualized in
Fig. 5. Specifically, each silhouette mask M (t) is treated as a planar
template and is tracked via affine constraint [11] that can encapsulate a
variety of transforms including translation, rotation and sheering:

M (t1) = AM (t0), where A=

[
1+a11 a12 a13

a21 1+a22 a23

]
. (1)

To minimize the processing time, we need a simple yet robust and
effective method – we rely on a modified version of the inverse Lucas-
Kanade template tracking [4]. Specifically, we compute the gradient
and error-image components for the whole image, while updating the
motion model parameters for each silhouette separately. In order to
capture larger displacement and be more resilient to frame-to-frame
lighting variations, the iterative updates are also performed in the coarse-
to-fine manner using Laplacian pyramid [7]. Furthermore, if at any
particular level a template is of small size, we fallback to using a simpler
2-parameter

[
a13 a23

]> image translation-only motion model.
The described-above mask warping Eqn. (1) is suitable for the Video

See-Through (VST) insertion into images at time t1 but can also be
extrapolated into some arbitrary short time in future t2 to avail predic-
tion for Optical see-through rendering. Specifically, since (t2− t1) is
expected to be relatively small for low-latency live system, the same
transform A properly scaled by the time adjustment ∆t =(t2−t1) would
correspond to the constant velocity assumption:

M (t2) = A(∆t)AM (t0), where ∆t = (t2− t1) and (2)

A(∆t) =

[
1+a11∆t a12∆t a13∆t

a21∆t 1+a22∆t a23∆t

]
. (3)

Finally, prior to performing the described-above template model-
based motion computation, we pre-warp the initial image Im(t0) toward
target image Im(t1) using rigid estimated poses P0 and P1. This step
of subtracting out camera motion before template tracking is quite
important to make sure recovered transform A (1) subsumes the object
motion only and constant velocity model is properly applied in (2).
Considering that we have dense estimated depth for time t0, we can
perform proper new view synthesis to time t1. However, since we are
not interested at rendering the full image, but only aiding the template
tracking, a much simpler and faster operation of homography-based
warping based on frame-to-frame suffices:

p0 = KR0R1
>K−1p1, (4)

where R0 and R1 are rotation components of P0 and P1, respectively.
The parallax resulting from depth variation in the scene is generally
small and its compensation will be subsumed the template adjustment
computation itself.

3 EXPERIMENTAL EVALUATION

The system is implemented in C++ (renderer is Unity-based) and ex-
ecuted on a HP VR backpack with Intel Core i7-8850H CPU, 16 GB
of RAM and Nvidia RTX 2080 GPU. Intel Realsense D435i stereo
camera with IMU and high-resolution RGB image for augmentation
was used as a main sensor. The average EKF estimation epoch of Navi-
gation takes less than 30 msecs. and satisfies the speed requirement for
the video see-through augmented reality. Instance segmentation and
terrain rendering with various overhead inside DepthInference module
take about 120 msecs. per frame while ObjectTracking module takes
less than 15 msecs. on average to complete.

Our experimental evaluation will show example insertions in two
different scenarios with static and moving objects that are not part of
the terrain model. We also give an example of intermediate processing
outcomes for ObjectTracking and evaluate its performance.

3.1 AR rendering with occlusions
Figures 1 and 6 show example frames from two different sequences with
inserted synthetic excavator and occlusion objects being mostly cars,
bicycles and people: incoming color images (Fig. 6a) together with
detected object instances and inferred depth (Fig. 6b) are shown as well.
The supplementary materials present full video snippets. Visual inspec-
tion of augmentation results (Fig. 6c) show that object-on-the-ground
assumption works well in practices because cars/trucks properly oc-
clude far-inserted avatars and being occluded by close-inserted avatars;
both static and dynamic object outlines are consistent in the majority
of cases and result in more compelling AR experience.

Additionally, to exemplify necessity of introducing ObjectTracking,
Fig. 7 shows augmentation example with ObjectTracking module dis-
abled in the example of Seq 2. Zoomed-in portion concentrates on car
and truck moving in opposite directions. As expected, it is quite clear
that while occlusion rendering remains correct for static objects, notice-
able artifacts are introduced for dynamic objects that are proportional
to their displacement, as depicted in Fig. 7c. Specifically, we observe
the synthetic excavator is incorrectly occluded while the car and the
track look elongated – that happens when the occluder is rendered at
the location of frame in the past (time t0 in the context of Fig. 2) but
background image is the latest (time t1 in the context of Fig. 2) when
both vehicles have moved relatively to the global sence.

After presenting AR insertion results, we want to exemplify how the
proposed work is different from its predecessor [8]. First, the architec-
ture of [8] is not designed for real-time AR pipeline and cannot operate
at a reasonable framerate with low latency on the current hardware to
provide satisfactory AR experience. Second, the use of instance seg-
mentation [6] rather than traditional semantic segmentation [3] results
in better 3D boundary outlines and occlusion reasoning – representative
examples of segmented frames from both datasets and corresponding



(a) Raw image (b) Detected object masks (c) AR with occlusions
Fig. 6. Augmented reality example for Seq 1 (top 2 rows) and Seq 2 (bottom 3 rows) were synthetic excavators are inserted in the scene respecting
occlusions with real objects: (a) input color image; (b) detected objects intances with inferred depth (c) augmented image with occlusions. Synthetic
excavator closer to camera occlude real objects, while farther excavator is properly occluded by objects in front of it. See supplementary videos.

object instance frames are depicted in Fig. 8 (we only retain certain
classes like cars, trucks, bicycles in order to obtain hypothetical occlu-
sion mask from the semantic segmentation output) . Specifically, the
instance segmentation [6] employed in the current solution produces
crisper object silhouettes (as in Fig. 8d) and does not merge several
objects that are close to each other into one blob (as in Fig. 8c) and natu-
rally produces distinctive templates for ObjectTracking module without
requiring an additional grouping step. All of the above attributes di-
rectly affect the quality of depth inference (since the estimated terrain
intersection points are more reliable) and the quality of the occlusion
rendering output.

3.2 Error analysis

While correct boundary delineation and correct depth ordering are
the key factors for proper occlusion treatment, the absolute depth
estimation is still important because virtual objects operate in physical
metric space. For the subsequent analysis of accuracy of the depth-
from-terrain (DfT) prediction method described in Sec. 2.4, let us
consider a general case of observer residing on the flat ground plane
looking straight at the horizon and analyze the depth error based on

projection rays. Without loss of generality, if the camera oriented at
some non-zero roll and pitch angles, we can always rectify the image
with homography operation similar to Eqn. (4).

Figure 9 depicts the side view of an observer with a camera with
focal length f residing at height h. Then using basic geometry we can
deduce the relationship between depth and depth uncertainty, which
turns out to be quadratic:

Derr =
p
2

D2

f h
, (5)

with p corresponding to the underlying image intersection [pixel]
precision. This error profile is very similar to stereo and any other
depth-from-triangulation method. In fact, the DfT technique resembles
stereo paradigm where depth is inferred from image [vertical] disparity
from horizon line y, baseline being h and focal length f . The quality
of occluder object outline (errors at object boundaries) depends on
the instance segmentation algorithm in use. The instance segmenta-
tion methods we rely on typically yield masks with pixel precision
(e.g., p ≈ 1). In the example of Fig. 9, we considered an observer
standing on the ground with head-worn sensor at h = 1.8 m height;



(a) Raw image (b) AR with ObjectTracking (c) AR without ObjectTracking
Fig. 7. Augmented reality example for Seq 2 when ObjectTracking module is enabled and disabled: (a) Zoomed-in central image portion of the raw
color image; (b) real-time AR insertion with all active modules in the proposed architecture (including ObjectTracking); (c) real-time AR-insertion
without ObjectTracking module – moving objects tend to create “stretching” artifacts due to latency in DepthInference module (over few frames) and
must be compensated via engaging ObjectTracking module, as explained in Sec. 3.1.

(a) Raw image (b) Segmentation output [3] (c) Dynamic classes of [3] (d) Occlusion mask from [6]
Fig. 8. Semantic segmentation examples for frames from Seq 1 and Seq 2 sequences and comparison to corresponding instance segmentation
outputs: (a) raw color image; (b) segmentation output from [3] and (c) mask for “dynamic” object classes (vehicle, bycicle, pedestrian); (d) instance
segmentation result [6] for the same frame. Smaller far vehicles are almost always segmented into one big blob with hairy boundaries by [3], while
individual cars are picked up by [6] used in the proposed approach which allows to better reason about occlusions for AR.

(a) DfT example and geometry (b) Depth error vs. depth (c) Depth error vs. depth (log scale)

Fig. 9. Error analysis for Depth-from-Terrain (DfT) technique. (a) Example input for depth analysis and geometric sketch of the ”rectified” depth-from-
terrain scenario – color frame which is used to find object instances is overlaid with the terrain model rendered from the AR insertion viewpoint.
”Lowest” object silhouette points are marked as intersections with terrain using white stars. (b) Expected depth estimation error vs. depth (distance
from the camera) for camera with f = 900 at height h = 1.8 for different silhouette boundary detection pixel precisions p. (c) Same analysis as in (b)
depicted in log scale to capture larger depth range D.



(a) Raw image (b) Depth-from-Terrain (c) Depth from single image
Fig. 10. Depth inference examples for depth from terrain and depth from single image methods. (a) Raw color image (b) Depth inferred by
Depth-from-Terrain technique (c) Depth inferred from the color image [1] for the same input image. Depth estimates for both methods are very similar
for close and middle ranges, whereas depth values for very far regions in depth from single image tend to be underestimated in comparison to the
depth-from-terrain estimated depicted in (b). Further, depth from single image currently requires running another neural network which further
increases the computation delay of the whole pipeline in comparison to a more efficient Depth-from-Terrain technique.

(a) Im(t0) (c) Im(t1)-Im(t0) (e) W (Im(t0))

(b) Im(t1) (d) Im(t1)-Wpre(Im(t0)) (f) Im(t1)) masked with W (M0)

Fig. 11. Example template tracking between images at different times t0 and t1 for Seq 1. The objective of ObjectTrackingis to “predict” the object
instance masks from image at time t0 (i.e. Im(t0)) in the image at a target later time t1 (i.e. Im(t1)). (a) Reference image Im(t0) at time t0; (b) Target
image Im(t1) at time t1; (c) Initial difference between images Im(t1)-Im(t0); (d) Significant portion of this image difference can be compensated by
pre-warping the target image based on the delta pose P01 = P1P0

−1, i.e. Im(t1)-Wpre(Im(t0)), as explained in Sec. 2.5, which exemplifies mostly depth
parallax and non-rigid parts of the scene; (e) Resulting warping of the reference image W (Im(t0)) toward target image Im(t1) after affine model-based
template tracking procedure (f) target image Im(t1)) superimposed with masks tracked from the reference frame W (M0). Refer to Sec. 3.3 for details.



(a) IoU between M1 and W (M0) (b) IoU between M2 and W (M0, t2)
Fig. 12. Quantitative evaluation of occluder mask prediction accuracy for dataset Seq 2. (a) Plot shows the intersection-over-union (IoU) measure
between instance segmentation mask M1 computed at time t1 and the mask tracked by ObjectTracking module from previous time t0 and warped
W (M0). (b) Plot shows the IoU measure between mask M2 at time t2 and mask W (M0, t2) extrapolated into time t2 from t0 using the affine warp
parameters recovered from t0 to t1 tracking.

for the sensor itself we used Intel Realsense D-435i1 with 1280x720
color camera and focal length around f = 900 pixels. As shown in
Fig. 9b, for p = 1, that results in depth error of less than one meter
for closer 50 m distances with growing to 3 m at 100 m distances and
more than 10 m for 200 m; distance up to a 1 km are also detectable but
the triangulation uncertainty of 300 m becomes quite high for reliable
occlusion reasoning. This error doubles if p = 2. In general, higher
pixel precision for ground intersection point (lower p) results in lower
depth estimation error, and vice versa. Consequently, following Eqn. 5,
a good option to improve depth analysis at farther distances is to take
a higher vantage point (increase h) or use telescopic system as in [21]
(increase f ).

Importantly, since the scale of the object is inversely proportional to
its depth, the amount of pixels will be much less for the farther object
which will reduce the quality of their segmentation and eventually
make some of them undetectable. This implies that real objects will
have difficulty interacting with even farther synthetic objects that they
suppose to occlude, which are even smaller in size. On the contrary,
the most noticeable flaws for AR are introduced by close objects that
occlude large portion of the scene and for which incorrect delineation
and occlusion reasoning are the most visually striking – the proposed
method works really well exactly with this kind of objects and brings a
significant value to the overall AR experience.

Interestingly, some objects can be so close that their true intersection
with the terrain would be below the image boundary – that makes
the DfT prediction to assume the intersection point resides on the last
image row and the resulting depth is overestimated (intersection point
is deduced to be further on the ground). We argue this overestimation
is not crucial because most of the intended synthetic insertions in our
long-range applications are at a further distance from the user and fully
visible by camera including their point of intersection with terrain –
thus, such AR insertions will be properly occluded by aforementioned
close real object anyway. Another solution is to use dense stereo
estimation or other existing techniques (like [9, 13, 26, 27]) to directly
sample the depth of such close range objects.

Another source of error is the pose estimation itself: specifically,
height component of location and especially pitch component of orien-
tation. Nowadays the accuracy of the most contemporary AR systems
is quite good, including the variation of [20] that we rely on. For sim-
plicity, the tracking error analysis could be subsumed into silhouette
boundary analysis by expressing the orientation angular error in terms
of pixels. For example, error of 1 pixel in images with focal length of
900 roughly corresponds to arctan(1/900) = 0.0637deg angular error,
which is similar to the overall orientation error of 0.10◦ exhibited by
Navigation module [22]. Importantly, typical pitch (and roll) estima-
tion errors are much smaller than total error that is dominated by yaw
component because roll and pitch angles are determined by the gravity
vector and are directly observable via IMU, i.e. they do not drift. In the
context of Eqn. 5 that would mean a small addition to the uncertainty
of typical instance segmentation module p and total depth inference
error would still be dominated by the instance segmentation error.

An important point to remember is that the error in pose estimation
will directly result in wrong AR avatar placement irrespectively of

1https://www.intelrealsense.com/depth-camera-d435i/

correctness of occlusion reasoning. Even in this case, considering that
we use the same terrain model for AR insertion and depth inference, the
incorrect AR insertion can still be properly occluded by real object with
incorrect depth as long as it appears lower on the terrain in comparison
to synthetic one.

On the contrary, the alternative depth inference method from a single
color image plus metric stereo mapping does NOT directly depend on
the pose accuracy because it does not require terrain alignment. Instead,
it depends on other factors like on the generality of the training dataset,
image lighting conditions, etc. Also, as Fig. 10 depicts, even though
we calibrate the depth scale factor using metric stereo matches, depth
values for very far regions tend to be underestimated in comparison to
the depth estimated from the terrain-rendered models. Finally, depth
from single image requires running a neural network which further
increases the computation delay of the whole pipeline in comparison to
a more efficient terrain renderer.

In conclusion, the presented analysis was concerned with the ab-
solute depth inference. In turn, proper occlusion reasoning relies on
relative depth between occluder and occluded – that means the proposed
method will perform great in case when distance between those objects
is significant (i.e. close large objects in the foreground occlude small
far objects in the background) and most of the challenges occur when
objects are close to each other. In the latter case occluder-occluded
relation may even swap across different frames and our current archi-
tecture described in Sec. 2.1 does not allow to easily disambiguate this
situation because there is no feedback loop between the renderer and
the ObjectTracking module. Proper treatment of this case would in-
volve reasoning about 3D bounding volumes of virtual and real objects
(e.g., as defined defined by uncertainty of the estimated depth) and falls
outside of the scope of the current work which keeps AR rendering
separate from head tracking.

3.3 Template tracking and occlusion prediction
To explicitly show the effect of the template tracking, a more detailed
analysis of intermediate processing is visualized in Fig. 11 for dataset
Seq 1. The objective of ObjectTrackingis to “predict” the object in-
stance masks from image at time t0 (i.e. Im(t0), Fig. 11a) to a later
time t1 (i.e. Im(t1), Fig. 11b). Typically, the significant part of image
motion Im(t1)-Im(t0) (Fig. 11c) can be compensated by warping based
on delta pose P01 = P1P0

−1, as explained in Sec. 2.5 and visualized
in Fig. 11d. Ideally, the resulting warped W (Im(t0)) should be very
similar to the target image Im(t1) except possible ghosting effect near
image boundaries of the moving objects, as near the cars in Fig. 11e.
The resulting warping of the mask W (M0) from time t0 should be in
very good alignment with the target image t1, as visualized in Fig. 11f.

Furthermore, it is possible evaluate the accuracy of template tracking
(1) by comparing the warped object detection mask W (M0) at time t0
with the analogous mask M1 computed offline for time t1. We use a
well-known intersection-over-union (IoU) measure [6] which must be 1
when W (M0) is identical M1. Figure 12a shows the time profile for
IoU measure for Seq 2 (it predominantly consists of moving cars) and
generally results in high values. Note that we cannot expect this value
to be always 1 due to uncorrelated object boundary delineation errors
introduced in M0 and M1. Also, occasionally IoU measurement drops
noticeably because of novel objects are detected at time t1 that were



not yet present at time t0.
Similar evaluation has been conducted to analyze quality of the

predicted frame warping (2) to future frame time t2 from estimated
warp W (M0, t2). Figure 12b shows similar IoU measure for the same
Seq 2 dataset comparing M2 to W (M0, t2) and we can notice that
predicted mask are of slightly inferior quality but still will be adequate
to provide occlusion experience in OST setups.

4 DISCUSSION

We presented an extended Augmented Reality pipeline capable to
perform real-time occlusion reasoning in the long-range large-scale
outdoor scenarios. Our solution is based on semantic object detection
and depth inference from terrain model rendering. Furthermore, we
derived the strategy to mask the latency introduced by object detection
and depth rendering by introducing a low-latency module that explicitly
adjusts the occlusion mask to the latest augmented image for video-
see-through mode and extrapolates to future time frame for optical
see-through. The proposed solution was realized on a commercial
backpack computer to evaluate the applicability of the solution to
outdoor AR with occlusion reasoning.

Despite its efficacy and practicality, the proposed technique has cer-
tain limitations. The assumption of observing terrain point intersection
is reasonable but lacks robustness in situations when terrain is bumpy
with a lot of self-occlusions. The ObjectTracking module performs
affine matching and that can fail for significantly deformable or artic-
ulated objects (like close-up moving pedestrians), but more specific
human tracking techniques can be employed in this case. The instance
segmentation is not very reliable when objects are only partially visible
in the field of view of the camera which occasionally results in wrong
occlusion reasoning near image borders.

The future work will address the listed-above shortcomings in the
systematic fashion. Specifically, next steps concentrate on further in-
creasing robustness and versatility of occlusion reasoning by improving
both object detection and depth inference components. Specifically,
we intend to alleviate planar object assumption by employing recent
advances of deducing full 3D pose from single image, which should
result in better occlusion reasoning for objects that are very close to
each other. Also, we plan to increase the robustness of the underlying
depth estimation technique by combining the deep learning depth-from-
monocular-image techniques with our terrain model viewpoint renderer
to be more resilient to errors in pose estimation (and possible alignment
errors between image and rendered terrain model) as well as get better
quality depth estimate for static detailed structures not captured by the
terrain model. Finally, we also consider to organizing a feedback loop
between ObjectTracking and DepthInference modules to produce more
temporally-consistent depth maps, occlusion masks and ultimately im-
prove occlusion reasoning for real and synthethic objects that are close
to each other.
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